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ARTICLES

Galimatias Arithmeticae
PAULO RIBENBOIM

Queen’s University
Kingston, Ontario
Canada K7L 3N6

You may read in the Oxford English Dictionary that galimatias means confused
language, meaningless talk. This is what you must expect in this talk.! As a token of
admiration to Gauss, I dare to append the word Arithmeticae to my title. I mean no
offense to the Prince, who, at age 24, published Disquisitiones Arithmeticae, the
imperishable masterwork.

As 1 retire (or am hit by retirement), it is time to look back at events in my career.
Unlike what most people do, I would rather talk about mathematical properties and
problems of some numbers connected with highlights of my life. I leave for the end
the most striking conjunction.

I'll begin with the hopeful number 11 and end with the ominous number 65.

11

¢ At age 11 I learned how to use x to represent an unknown quantity in order to solve
problems like this one: “Three brothers, born two years apart, had sums of ages
equal to 33. What are their ages?” The power of the method was immediately clear
to me and determined that I would be interested in numbers, even after my age
would surpass the double of the sum of the ages of the three brothers.

But 11 is interesting for many better reasons.

* 11 is the smallest prime repunit. A number with n digits all equal to 1 is called a
repunit and denoted by R,. So 11 = R,. The following repunits are known to be
prime: R, with n=2, 19, 23, 317, and 1031. It is not known whether there are
infinitely many prime repunits.

e If n > 11, there exists a prime p > 11 such that

p divides n(n + 1)(n +2)(n + 3).
A curiosity? Not quite. A good theorem (by Mahler) states that if f(x) is a
polynomial with integral coefficients of degree two or more (for two, the theorem is
Pélya’s), and if H is a finite set of primes (such as {2, 3,5, 7, 11}) then there exists n,
such that if all prime factors of f(n) are in H, then n <n,.

Another way of expressing this fact is as follows: lim, ,,P[f(n)] =00, where
P[ f(n)] denotes the largest prime factor of f(n). With the theory of Baker on linear
forms in logarithms, Coates gave an effective bound for n,. For the particular
polynomial f(x) =x(x + 1)(x + 2)(x + 3), the proof is elementary.

'This paper is a modified version of a talk at the University of Munich, given in November 1994 at a
festive colloquium in honor of Professor Sibylla Priess-Crampe.

331
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11 is the largest positive integer d that is square-free and such that @(/— d ) has a
euclidean ring of integers. The other such fields are those with d =1, 2, 3, and 7.
This means that if o, B € Z[V — d ], there exist y, § € Z[V — d ] such that a = By + &
where 8 =0 or N(8) <N(B). (Here, for a=a+bV/—d, N(a)=a®+db® The
situation is just like that for euclidean division in the ring Z of ordinary integers.)
It is not known whether there exists a cuboid with sides @, b, and ¢ measured in
integers, as well as all diagonals measured in integers. In other words, it is not
known whether the following system has a solution in non-zero integers:

a2+b2 =
b2+ =¢e’
t+a2 =f°

a+b*+c? =g°

If such integers exist, then 11 divides abe.
11 is the smallest integer that is not a numerus idoneus.

You don’t know what a numerus idoneus is? I too needed to reach 65 before
realizing how this age and idoneus numbers are connected with each other. So be
patient.

According to the theory of supersymmetry, the world has 11 dimensions: 3 for space
position, 1 for time, and 7 to describe the various possible superstrings and their
different vibrating patterns, so explaining subatomic particles’ behavior.

Is this a joke or a new theory to explain the world?

The Mersenne numbers are the integers M, = 29 — 1, where g is a prime. Big deal:
some are prime, some are composite. Bigger deal: how many of each kind? Total

mystery!
M, = 2" —1=2047 = 23-28. It is the smallest composite Mersenne number. The
largest known composite Mersenne number is M, with

q = 8069496435 X 1057 — 1.

19

One of my favorite numbers has always been 19. At this age Napoleon was winning
battles—this we should forget. At the same age, Gauss discovered the law of
quadratic reciprocity—this you cannot forget, once you have known it.

First a curiosity concerning the number 19. It is the largest integer n such that
nl=(n—=1D!+(n—-2)1— -+ 1!

is a prime number. The other integers n with this property are
n=3,4,5,6,7,8,9,10, and 15.

Both the repunit R,y and the Mersenne number My are prime numbers.

Let Uy=0, U;=1, and U,=U,_; +U,_, for n=>2; these are the Fibonacci
numbers. If U, is prime, then n must also be prime, but not conversely. 19 is the
smallest prime index that provides a counterexample: U,y = 4181 = 37-113.

The fields Q(Y— 19), @(\/19) have class number 1. (The class number is a natural
number which one associates to every number field. It is 1 for the field of rationals;
it is also 1 for the field of Gaussian numbers, and for any field whose arithmetical


http://www.jstor.org/page/info/about/policies/terms.jsp

VOL. 71, NO. 5, DECEMBER 1998 333

properties resemble those of the rational numbers. The larger the class number of a
number field, the more its arithmetical properties “deviate” from those of the
rationals. For more on these concepts, see [3]) The ring of integers of Q(V19) is
euclidean, while the ring of integers of Q(V — 19) is not euclidean.

e Let n>2, n# 2 (mod 4), and let {, = ¢/ denote a primitive n-th root of 1. 19
is the largest prime p such that @({,) has class number 1. This was important in
connection with Kummer’s research on Fermat’s last theorem.

Masley and Montgomery determined in 1976 all integers n, n # 2 (mod 4), such
that Q(¢,) has class number 1, namely:

n=1,3,4,5,7,8,9,11,12,13,15,16,17,19, 20,21, 24,25,27, 28,
32,33,35,36,40,44,45,48, 60, and 84.

* Balasubramanian, Dress, and Deshouillers showed in 1986 that every natural
number is the sum of at most 19 fourth powers. Davenport had shown in 1939 that
every sufficiently large natural number is the sum of at most 16 fourth powers. This
provided a complete solution of the two forms of Waring’s problem for fourth
powers.

29

* Twin primes, such as 29 and 31, are not like the ages of twins—their difference is 2.
Why? There are many twin persons and many twin primes, but in both cases, it is
not known whether there are infinitely many. ..

Euler showed that

= 00,

)»

p prime

1
p
On the other hand, Brun showed that

> Lo
p, p+2 primes

Brun’s result says that either there are only finitely many twin primes, or, if there
are infinitely many twin primes, their size must increase so rapidly that the sum
above remains bounded. All of this is amply discussed in my book on prime
numbers [5].

e A curiosity observed by Euler: If 29 divides the sum a* +b* + ¢*, then 29 divides
ged(a, b, o).

® Let p be a prime. The primorial of p is

h= I1 ¢
g<p,q prime

29 = 5# — 1. The expressions pﬁ + 1 and p# — 1 have been considered in connec-
tion with variants of Euclid’s proof that there exist infinitely many primes. The
following primes p are the only ones less than or equal to 11213 such that p# -1
is prime:

p=3,5,11,13,41,89,317,991, 1873, 2053.

For this and similar sequences, see [5].
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¢ 2:29% — 1 = O (a square); similarly 2-12 — 1 = O, 2-5* — 1 = O. In fact, there are
infinitely many natural numbers x such that 2x* — 1 = O. Here is how to obtain all
pairs of natural numbers (¢, x) such that ¢2 — 2x%= — 1. From (¢ + V22)(t — V2x)
= —1, it follows that ¢ + V2x is a unit in the field Q(V2). The fundamental unit is
1+v2 with the norm (1+vV2)1 —-vV2)=—1, so t+V2x =0+ V2)" with n
odd. Thus we have

(1+v2) =3+2/2; (1+V2) =7+52; (1+V2) =41+29/2.

The next solution is obtained from

(1+v2) =239+ 169V2 ,

namely, 2- 1692 — 1 = 2392,
* The ring of integers of @(v29 ) is euclidean. There are 16 real quadratic fields Q(vd )

with a euclidean ring of integers, namely
d=2,3,5,6,7,11,13,17,19,21, 29, 33,37,41, 57, 73.

* 2X%+29 is an optimal prime-producing polynomial. Such polynomials were first
considered by Euler—they are polynomials f€ Z[ X] that assume as many initial
prime values as they possibly can. More precisely, let fe& Z[X], with positive
leading coefficient and f(0) = g, a prime. There exists the smallest r > 0 such that
f(r)>q and qlf(r). The polynomial is optimal prime-producing if f(k) is prime
fork=0,1,...,r—1.

Euler observed that X*+ X441 is optimal prime-producing, since it assumes
prime values at k=0, 1,..., 39, while 40% 4+ 40 + 41 = 41%,

In 1912, Rabinovitch showed that the polynomial f(X)=X?+X+gq (with ¢
prime) is optimal prime-producing if and only if the field Q(y/1 —4q) has class
number 1.

Heegner, Stark, and Baker determined all the imaginary quadratic fields Q(/d)
(with d <0 and d square-free) with class number 1:

d=-1,-2,-5,-7,-11, —19, —43, —67, — 163.
These correspond to the only optimal prime-producing polynomials of the form
X%+ X+ q, namely g = 2,3,5,11,17,41. X* 4+ X + 41 is the record prime-produc-
ing polynomial of the form X*+ X +gq.
Frobenius (1912) and Hendy (1974) studied optimal prime-producing polynomials
in relation to imaginary quadratic fields having class number 2. There are three

types of such fields:
() @G/ —2p), where p is an odd prime;
(i) Q(/—p), where p is prime and p =1 (mod 4);
(i) @/ —pq) where p, g are odd primes, with p <g and pg = 3 (mod 4).
For the types of fields above, the following theorem holds:
@ ](?(\/ — 2p) has class number 2 if and only if 2X* + p assumes prime values at
=0,1,....,p— L
(i) @/ —p) has class number 2 if and only if 2X*+2X + p—;—l assumes prime
values at k=0,1,...,p—;—3.
(iii) Q(/—pq) has class number 2 if and only if pX2+pX + L7 assumes prime
values at k=0,1,...,’%—1 -2
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Stark and Baker determined the imaginary quadratic fields Q(vd) (with d < 0 and
d square-free) that have class number 2. According to their types, they are:

(@) d=-6,-10, —22, —58

(i) d=—5,—-13,—37
(iii) d= —15, —35, =51, —91, — 115, — 123, — 187, —235, — 267, —403, —427.
With these values of d one obtains optimal prime-producing polynomials.

In particular, 2X2+ 29 is an optimal prime-producing polynomial, with prime
values at k=0,1,...,28; it corresponds to the field Q(V—58), which has class
number 2.

29 is the number of distinct topologies on a set with 3 elements. Let 7, denote the
number of topologies on a set with n elements; thus 7, =1 and 7, = 2. One knows
the values of 7, for n <9 (Radoux, 1975).

Approaching the thirties, the age of confidence, life was smiling. 29 was the first
twin prime age I reached since I became a mathematician by profession, so I select
the number

30

* At this age I was in Bahia Blanca, Argentina, preparing a book which has, I believe,
the distinction of being the southern-most published mathematical book. (At least
this is true for books on ordered groups—but mine is not the northern-most
published book on the subject.)

e There is only one primitive pythagorean triangle with area equal to its perimeter;
namely (5,12, 13), with perimeter 30.

* 30 is the largest integer d such that if 1 <a <d and ged(a,d) =1, then a is a
prime. Other numbers with this property are 3, 4, 6, 8, 12, 18, and 24. This was first
proved by Schatunowsky in 1893 and, independently, by Wolfskehl in 1901.
(Wolfskehl is the rich mathematician who donated 100,000 golden marks to be
given to the author of the first proof of Fermat's last theorem to be published in a
recognized mathematical journal.)

This result has an interpretation as follows. Given d>1 and a, 1<a<d,
ged(a, d) = 1, by Dirichlet’s theorem, there exist infinitely many primes of the form
a+kd (k> 0). Let p(a,d) be the smallest such prime, and let

p(d) =max{p(a,d)ll <a<d,ged(a,d) =1}.
If d > 30, then p(d) >d + 1. In particular,

lim ian(_lfli > 1.

Pomerance has shown:

where ¢(d) is Euler’s totient of d and 7y is the Euler—Mascheroni constant.

On the other hand, as shown by Linnik, for d sufficiently large, p(d) < d*, where
L is a constant. Heath Brown showed that L <5.5.
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* 32 is the smallest integer n such that the number v, of groups of order n (up to
isomorphism) is greater than n: y,, = 51.
I hate the number 32. At 32 degrees Fahrenheit, water becomes ice and snow
begins to fall. Let us change the subject!

Older people remember best the events of their youth and those of the more recent
past. I haven’t forgotten anything I did not want to forget, so I could let you know
about all the years 33, 34,... . But I would rather concentrate on the 60’s.

60

® 60 was the base of numeration in the counting system of the Sumerians (ca. 3500
BC). Today we still use the sexagesimal system in astronomy and in the subdivisions
of the hour.

* 60 is a highly composite number. Such numbers were introduced and studied by
Ramanujan (1915): The natural number n is highly composite if d(n)> d(m)
for every m, 1 <m <n, where d(n)=number of divisors of n. Thus d(60) =
d(2%-3-5)=3-2-2 =12. The smallest highly composite numbers are

2,4,6,12,24, 32,48, 60,120, 180, 240, 360, 720, 840, . .. .

* 60 is a unitarily perfect number, which I now define. A number d is a unitary

divisor of n if dl|n and ged(d, n/d) = 1; n is unitarily perfect if
n= 3 {d|1<d<n, d unitary divisor of n}.

Unitary divisors of 60 are 1, 3, 4, 5, 12, 15, 20 and their sum is indeed 60.
Conjecture: There exist only finitely many unitarily perfect numbers.

The only known unitarily perfect numbers are

6,60,90,87360, and 2'8:3:7-11-13-19-37-79-109-157-313.

* 60 is the number of straight lines that are intersections of the pairs of planes of the
faces of a dodecahedron.

* 60 is the order of the group of isometries of the icosahedron. This is the alternating
group on 5 letters. It is the non-abelian simple group with the smallest order. The
simple groups have been classified—a great achievement! There are 18 infinite
families:

* cyclic groups of prime order;

with n > 5;

* six families associated to the classical groups;

* ten families associated to Lie algebras (discovered by Dickson, Chevalley, Suzuki,
Ree, and Steinberg).

There are also 26 “sporadic” groups, which don’t belong to the above families. The

sporadic groups with the largest order if Fischer’s monster, which has

* alternating groups A

n>

2%.3%0.59.76.112.133-17-19-23-29-31-41:47-59-71 > 8- 10%

elements.
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* A curiosity: Let k >0, and let ay,...,a;, x, y be digits. If the number (in decimal
notation)

a8y . .. QR XYXYXYXyxy
is a square, then xy = 21, 61, or 84. Examples:

1739288516161616161 = 1318820881%; 258932382121212121 = 5088539892.

e The Mersenne number Mg, =2 — 1 is a prime. Today there are 37 known prime
Mersenne numbers M p=2F—1, namely, those with

p=2,3,5,7,13,17,19,31,61, 89,107, 127,521,607, 1279, 2203, 2281,
3217,4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243,
110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221,
and 3021227.

28021227 _ 1 s also the largest prime known today.

62

This number is remarkable for being so uninteresting. As a matter of fact, suppose
that, for some reason or another, there is some number that is not remarkable. Then
there is the smallest non-remarkable number, which is therefore remarkable for being
the smallest non-remarkable number.

But this is just another example of Russell’s paradox. ..

63

* This number appears in a cycle associated with Kaprekar’s algorithm for numbers
with 2 digits. This algorithm, for numbers with k digits, goes as follows: Given k
digits a,...a;, not all equal, with @, >a,> - >4, >0, consider two numbers
formed using these digits: @,a, ...a, and a,a;_, ...a,. Compute their difference,
and repeat the process with the k digits so obtained.

Kaprekar’s algorithm for 2, 3, 4, and 5 digits leads to the following fixed points or
cycles.
2 digits — cycle 63-27-45-09-81
3 digits — 495
4 digits — 6174
5 digits — one of the three cycles: 99954-95553
98532-97443-96642-97731
98622-97533-96543-97641
Example: {3,5}: 53 — 35 =18, 81 — 18 =63, 63 — 36 = 27, 72 — 27 =45, 54 — 45 =
09, 90 — 09 = 81.

* 63 is the unique integer n > 1 such that 2" — 1 does not have a primitive prime
factor. Explanation: If 1 <b <a, with ged(a,b) =1, consider the sequence of
binomials ¢" —b" for n > 1. The prime p is a primitive prime factor of a" —b" if
pla®—=b" but p ta™ —b™ if 1 <m <n.
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Zsigmondy proved, under the above assumptions, that every binomial a" —b" has a
primitive prime factor, except in the following cases:

@D n=1a-b=1;

(ii) n=2, a and b odd, and (& + b) a power of 2;
(i) n=6,a=2,b=1
This theorem has many applications in the study of exponential diophantine
equations; see [4]. Explicitly, when @ = 2 and b = 1, the sequence is:

1,3,7,15=3-5,31,63 = 3%-7,127,257,511,1023 =3-11-31, ...

64

64 is almost 65, a number I hated to reach, but which nevertheless has many
interesting features.

65

*® 65 is the smallest number that is the sum of 2 squares of natural numbers in 2
different ways (except for the order of summands):

65=8%2+12="72+42,

Recall Fermat’s result: n is a sum of 2 squares if and only if for every prime
p =3 (mod 4), v,(n) is even. (Here v,(n) denotes the p-adic value of n, that is
p"™|n but p %M1 does not divide n.) The following formula gives the number

r(n) =#{(a,b)|0<b <aand n=a*+b%}.

For each d > 1, let

d
x(d)={(-1) * ifdisodd,

0 if d is even.
Let R(n) =X, x(d). Then

B(2n) if R(n) is even,

"M =414 R(n)
2

if R(n) is odd.

Example: 65=>5-13 has divisors 1, 5, 13, 65 and R(65) =YX, x(d) =4, so
r(65) = 2.

® 65 is the smallest hypotenuse common to two pythagorean triangles. This follows
from the parametrization of the sides of pythagorean triangles: If 0 <x, y, z, with y
even and x®+ y? =z?, then there exist @ and b, 1 <b <a, such that

x=a*>—-b% y=2ab; z=a"+b%

Moreover the triangle is primitive (i.e., ged(x, y, ) = 1) if and only if ged (¢, b) = 1.
From 65 =82+ 12 =72+44> one gets the pythagorean triangles (63,16,65) and
(33,56, 65).
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* A curiosity: 65 is the only number with 2 digits d, e, 0 <e <d <9, such that
(de)* — (ed)* = O, a square. Indeed, 65* — 56* = 33%, and the uniqueness follows
from the parametrization indicated above.

® 65 is also a remarkable number of the second kind, that is, it counts the number of
remarkable numbers satisfying some given property. In the present case, 65 is
perhaps the number of Euler’s numeri idonei. 1 say “perhaps” because there is still
an open problem, and instead of 65 there may eventually exist 66 such numbers.

Numeri idonei

What are these numeri idonei of Euler? Also called convenient numbers, they were
used conveniently by Euler to produce prime numbers.

Now T'll explain what the numeri idonei are. Let n > 1. If g is an odd prime and
there exist integers x, y > 0 such that ¢ =x*+ ny?, then:

@) ged(x,ny) =1,
(i) if g =27 +ny} with integers x,, y; >0, then x=x, and y =y,.

We may ask the following question. Assume that q is an odd integer, and that
g =x>+ny®, with integers x,y >0, such that conditions (i) and (ii) above are
satisfied. Is q a prime number?

The answer depends on n. If n =1, the answer is “yes,” as Fermat knew. For
n =11, the answer is “no”: 15 =22 + 11-1% and conditions (i) and (ii) hold, but 15 is
composite. Euler called n a numerus idoneus if the answer to the above question is
“yes.”

Euler gave a criterion to verify in a finite number of steps whether a given number
is convenient, but his proof was flawed. Later, in 1874, Grube found the following
criterion, using in his proof results of Gauss, which I will mention soon. Thus, n is a

convenient number if and only if for every x > 0 such that g =n +x* < %", if g=rs

and 2x <r <s, then r=s or r=2x.
For example, 60 is a convenient number, because

60 + 12 = 61,
60 +22=64=4-16=8"8,
60 + 32 = 69%,
60 + 4% = 76%

and the numbers marked with a % do not have a factorization of the form indicated.
Euler showed, for example, that 1848 is a convenient number, and that

q = 18518809 = 1972 + 18481002

is a prime number. At Euler’s time, this was quite a feat.

Gauss understood convenient numbers in terms of his theory of binary quadratic
forms. The number n is convenient if and only if each genus of the form x* + ny?® has
only one class.

Here is a list of the 65 convenient numbers found by Euler:

1,2,3,4,5,6,7,8,9,10,12,13,15, 16, 18, 21, 22, 24, 25,28, 30, 33,
37,40,42,45,48,57,58,60,70,72,78, 85, 88,93,102,105, 112, 120,
130, 133,165,168, 177, 190,210, 232, 240, 253, 273, 280, 312, 330, 345,
357,385,408, 462, 520, 760, 840, 1320, 1365, 1848.
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Are there other convenient numbers? Chowla showed that there are only finitely
many convenient numbers; later, finer analytical work (for example, by Briggs,
Grosswald, and Weinberger) implied that there are at most 66 convenient numbers.

The problem is difficult. The exclusion of an additional numerus idoneus is of a
kind similar to the exclusion of a hypothetical tenth imaginary quadratic field (by
Heegner, Stark, and Baker), which I have already mentioned.

An extraordinary conjunction

If your curiosity has not yet subsided, I was struck in 1989, in Athens, at the occasion
of my “Greek Lectures on Fermat’s Last Theorem,” by an extraordinary conjunction
of numbers. Once in a lifetime, and not to be repeated before. ..

At that year, my wife’s age and my age were 59 and 61—twin primes (but we are
not twins); at that same year, we had been married 37 years—the smallest irregular
prime. If you are still interested, Kummer had proved that Fermat’s last theorem is
true for all odd prime exponents p that are regular primes. These are the primes p
that do not divide the class number of the cyclotomic field generated by the p™ root
of 1. Kummer also discovered that 37 is the smallest irregular prime. Pity that 1989
(the year of my Athens lecture) is not a prime.

So you are challenged to find the next occurrence of numbers like 37, 59, 61, but in
a prime-numbered year.

Notes This paper on remarkable numbers would not have been possible were it not
for the very original book by F. Le Lionnais, Les Nombres Remarquables, published
in 1983 by Hermann, in Paris.

Frangois Le Lionnais was not a mathematician by profession, but rather a scientific
writer, and as such, very well informed. His book Les Grands Courants de la Pensée
Mathématique is very engrossing to read even today. Just after the war he gathered in

-this book the ideas of several young French mathematicians—still little known at that
time—who would soon rise to the pinnacle. An English translation and the original
are available in good libraries. I have an autographed copy of the book on remarkable
numbers, where Le Lionnais thanked me for calling his attention to the number 1093.
You may read about this number in my article 1093, Math. Intelligencer 5 (1983),
28-34.

Another book of the same kind, which served me well, is: D. Wells, The Penguin
Dictionary of Curious and Interesting Numbers, Penguin, London, UK, 1986.

For results on algebraic numbers, nothing is easier for me than to quote my own
book [3], to appear in a new edition at Springer-Verlag. For numeri idonei, see [1].
Concerning primitive factors of binomials, see [4]. On prime numbers, Fibonacci
numbers and similar topics, see [5]. For further reference, see [2].

The following list of references is, it goes without saying, incomplete.
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The Newest Inductee
in the Number Hall of Fame

COLIN C. ADAMS

Williams College
Williamstown, MA 01267

“Rational and irrational, algebraic and transcendental, whole, natural, positive, nega-
tive, even, odd, prime, cardinal, ordinal, yes even p-adic numbers: It gives me great
pleasure to welcome you all to these induction ceremonies at the Number Hall of
Fame here in Canton, Ohio. It’s truly gratifying to see such a tremendous and diverse
turnout for this event. How wonderful it is that we can forget our differences, put
aside our animosities, and come together to honor those amongst us who have truly
achieved a purpose in life above and beyond our appearance on ledgers, computer
screens, and cash registers around the globe.

The vast throng of numbers here today must reflect, at least in part, the rarity of
these occasions. We are not that type of Hall of Fame where any number eventually
makes the cut. Not like the Hall of Fame of Physical Constants, where a number is
embarrassed not to eventually appear in their list. No, as you can see by the small set
of numbers sitting up on the dais, including most of the past recipients of the award,
this honor is bequeathed on only a select few.

Let me quickly introduce you to our past recipients. On the far left we have the first
inductee into the Number Hall of Fame, someone I need say little about, as everyone
knows her well. Yes, it’s the delightful number One. How could anyone be less than
charmed by her ability to multiply a number without altering it?

Sitting to the left of One is the incomparable e, that paradoxical sorcerer who when
put to the power x becomes his own derivative. What a pleasure it is to have you here
today, sir.

Just to the left of e, we have that mandarin enigma, the Buddha of math, Mr. Zero.
Please, don’t get up. It’s not a good idea after your triple bypass.

Next to Mr. Zero, we have the ebullient Two. As he is all too fond of saying, “You
need Two to tango.” Seated next to Two is his son, V2, who with his simple and
forthright manner, hardly deserves to be called irrational.

Seated in the empty chair to the left of V2 is his imaginary friend i. Please, no
snickering from you Bernoulli numbers in the back. Having an imaginary friend
doesn’t necessarily mean you're a couple million digits past rational, even if in this
particular case, it happens to be true.

And at the end sits 1+
the Golden Ratio. Her attendance at any event brings an elegance and refinement to
the proceedings.

Several of our inductees could not be with us today, including Euler’s constant,

, that icon of Greek aesthetics, known affectionately as

N
better known as lim | ). % —In(N) | or .5772157. .. to her friends. Unfortunately,

Now | 7
she twisted her ankle at lalst night’s pre-ceremony ball while doing the Watusee.
Finally, standing right next to me, we have someone who needs no introduction of
her own, but who has agreed to give the introduction for our new inductee. Ladies
and Gentlemen, I am very pleased to present 7.”

“Well thank you, Six, for such a warm welcome from the perfect host. I am greatly
honored to have the privilege of introducing our new inductee. Perhaps I should
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begin by explaining why I was chosen to make these remarks. Many of you know me
as the area of a circle of radius one, or half the perimeter of that circle. You may be
familiar with my appearance with my dear friend e in normal distributions as defined
in probability. I have been lucky in my career to have more than one role to play. But
perhaps you are unfamiliar with another capacity where I have been able to contribute
in my own small way, really just over the last hundred or so years, since the discovery
of hyperbolic geometry.

Let me give a little background on that, as I realize some of you numbers haven’t
been paying a lot of attention to recent advances in geometry. Discovered in the mid
1800’s, hyperbolic geometry’s existence was the proof that Euclid’s parallel postulate
was independent of the other axioms of geometry, as here was a geometry that did not
satisfy it. Its properties were so extraordinary that Gauss knew about it for 30 years,
but kept mum, for fear of denigrating verbal abuse from his colleagues.

Let me begin my description of hyperbolic geometry with the upper-half-plane
model of the hyperbolic plane, which is relatively easy to visualize. I brought along
some graphics to help us along. May we have the first slide, please? In Ficure 1, we

x-axis

FIGURE 1
The upper-half-plane model of the hyperbolic plane.

see the points in the hyperbolic plane, namely all the points in the x-y plane having
positive y-coordinate. The curves that play the role of straight lines in this geometry,
what we call geodesics, will be the vertical half-lines, and the semi-circles perpendicu-
lar to the x-axis. By calling such a curve a geodesic, we simply mean that the shortest
path between two points on such a curve is the sub-arc of that curve with those two
points as endpoints.

We measure the length of a curve by integrating 1/y along it. So the distance

between two points is f 1 ds, where vy is the geodesic path from the one point to
the other. Y

Now, as you know, in the Euclidean plane, the sum of the angles of a triangle,
measured in radians, is always exactly equal to me, that is to say 7. Moreover, a
triangle can have any positive area. In particular, there is no upper limit to the size of
a triangle.

But in the hyperbolic plane, we encounter a very different world indeed. The area
of a triangle is given by m— (a + B+ ), where @, B, and y are the angles of the
triangle given in radians. I will demostrate this in just a bit, but first let me point out
the implications. The angles of the triangle determine the area. This means there can
be no scaling up or down as there is in Euclidean space. A triangle with specified
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angles only comes in one size. Moreover, since the area of a triangle must be positive,
the sum of the angles of a hyperbolic triangle must be strictly less than 7. Clearly,
hyperbolic space is not just a slight variation on Euclidean space. The most basic
tenets of geometric behavior, which we consider interwoven into the fabric of
Euclidean geometry, become nonsensical in hyperbolic space.

To see that the area of a hyperbolic triangle is given by 7 — (a + B+ ), let us first
compute the area of a triangle having one vertex with angle zero. Now, in order to
have an angle of zero, that vertex of the triangle must be pulled all the way out to a
point on the boundary of hyperbolic space, either on the x-axis or out the positive
y-axis at {o}. Although this means the vertex will be missing from the triangle, since
the boundary of hyperbolic space is not a part of hyperbolic space, we can still
determine the area of this slightly cropped triangle. It is convenient to choose the
vertex with angle zero to be the one centered at {=}, and the bottom edge of the
triangle to appear on the unit circle, so our triangle appears as in Ficure 2. All
triangles with a single angle of zero are equivalent to a triangle like this one.

[

1 a 0 ! 1 \-axis
FIGURE 2
A hyperbolic triangle with one angle 0.

The hyperbolic area A of this triangle T is obtained by integrating 1/y* over the
triangle. Since a = cos(7 — a) and b = cos B, we obtain:

b 00
A= f f iz dy dx = arcsin(b) — arcsin(a)
a “y1-x2 Y

=7w/2-B—(a—-7/2)=m—(a+B).

A triangle T, with three non-zero angles can always be thought of as a sub-triangle
of a triangle such as T, by extending one edge of T, off to infinity and pulling a vertex
of T, on that edge off to infinity, as in Ficure 3. The area of triangle T, will be the
difference of the areas of the two triangles T and T,, each of which has a vertex with
angle zero.

Therefore A(T))=A(T)—A(T,)=m—a—B—(7—(By+v))=m—(a+ B+ v
This completes the proof.

You will notice right away that the smaller the angles, the bigger the area. So if we
want a triangle with as large an area as possible, we should take the angles to be as
small as possible. Actually, we would like to take a triangle with all angles equal to
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FIGURE 3 -‘
A(T,) = A(T) — A(Ty).

zero. If we allow ourselves to put all the vertices of the triangle on the boundary of
hyperbolic space, we construct a triangle with all angles equal to zero, and area equal
to 7. Such a triangle, missing its three vertices, is called an ideal triangle. Note that
we needn’t take any of the vertices up at {9} if we don’t want to. (See Ficure 4.)

So to make the point you have all been patiently waiting for, besides being the area
of a circle of radius 1 and half the perimeter of that same circle, I am also the area of
any ideal triangle in hyperbolic 2-space, which happens to be the triangle of greatest
area in hyperbolic space. But what does this have to do with our newest inductee into
the Number Hall of Fame?

X-axis

FIGURE 4
Ideal triangles in the upper-half-plane model.

My esteemed colleagues of all persuasions, I am proud to introduce to you the
Gieseking constant. Little known outside of hyperbolic circles, G.C. is an up-and-comer
who will be playing an important role for many years to come. Let me define her for
you in an analogy to my own realization as the area of an ideal triangle in the
hyperbolic plane. However, now we will step up a dimension to hyperbolic 3-space.
Let us work in the upper-half-space model of hyperbolic 3-space, where geodesics
correspond to vertical half-lines and semi-circles perpendicular to the boundary. Here,
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FIGURE 5
An ideal tetrahedron in the upper-half-plane model of hyperbolic 3-space.

we also have geodesic planes that correspond to hemispheres perpendicular to the
boundary and vertical half-planes. And instead of an ideal triangle, we will look at
what is called an ideal tetrahedron. To construct such an object, we want four faces,
each individually an ideal triangle contained within a geodesic plane, such that any
two share an edge which is itself a geodesic, and any three meet at a single ideal
vertex. For convenience, we will choose one of the vertices to occur up at the top of
the positive z-axis, at {}, as in Ficure 5.

Such an ideal tetrahedron has a variety of interesting properties. First I will
demonstrate that the sum of the three dihedral angles around a vertex is equal to me,
which is to say 7. How to see this? Slice the top off the tetrahedron with a horizontal
plane, called a horosphere. Then the dihedral angles of the three vertical edges form
the three angles of a Euclidean triangle in that plane, which must therefore sum to .
Since the vertex at {o} is no different from any other vertex, but just appears so in this
model, the same fact will hold for all of the vertices.

In addition, any two opposite dihedral angles of the tetrahedron are equal to one
another. Here is a quick trick to convince yourselves that this is true. Take two
opposite edges. Then there is a unique geodesic perpendicular to both, as in Ficure 6.
This will contain the shortest geodesic arc from one to the other. Such a shortest arc
always exists between two geodesics in hyperbolic space, assuming they do not
intersect in either an interior point or their endpoints. Now rotate the entirety of the
ideal hyperbolic tetrahedron 180 degrees about the geodesic. Each of the two
opposite edges will be sent back to itself, but with its endpoints interchanged. Thus,
this rotation permutes the vertices of the tetrahedron and therefore sends the entire
ideal tetrahedron back to itself. Moreover, it switches the other two pairs of opposite
edges, and they must therefore have the same dihedral angles. Since we can do this
for any of the three pairs of opposite edges, the dihedral angles on each opposite edge
must be the same.

Thus three dihedral angles around a single vertex determine all the dihedral angles.
This is enough to determine the tetrahedron itself. Since these three angles sum to 7,
there are actually only two degrees of freedom for ideal tetrahedra, say @ and B.
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/—\.\\Z d

FIGURE 6
Opposite dihedral angles are equal.

By now you may be wondering, in analogy with our discussion of the area of
hyperbolic triangles in the hyperbolic plane, what is the largest possible volume of a
tetrahedron in hyperbolic space? Clearly, if we take a tetrahedron with vertices
occurring inside hyperbolic space, we can always find one a little bigger, by pulling
one of the vertices out a little farther toward infinity. But if we also allow tetrahedra
with ideal vertices, then the maximum volume will occur for a tetrahedron with all
ideal vertices, which is to say an ideal tetrahedron.

Remember that for ideal triangles, all such had the same area. But for ideal
tetrahedra, the volume is not always the same. It depends on the dihedral angles a, B,
and . For what ideal tetrahedron is the volume the largest possible? We will see that
it is the regular one, with all dihedral angles /3. That’s not too surprising, since if a
maximum exists, we would expect it to occur at a tetrahedron with a lot of symmetry.

First, let’s find a formula that gives the volume of an ideal tetrahedron in terms of
its determining angles. We need to integrate 1/z° over the entirety of the tetrahe-
dron. Let’s choose our ideal tetrahedron to have one vertex up at {=} and the bottom

(44

AN

B

FIGURE 7
Projecting an ideal tetrahedron to the x-y plane.
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hemispherical face on the hemisphere given by z =11 —x*—y?. Looking down

from way high up on the positive z-axis, the tetrahedron looks like a triangle inscribed
in the unit circle. We can orient the triangle so that one edge is perpendicular to the
x-axis. A triangle inscribed in the unit circle always has its center at the center of the
circle, so we can cut this triangle up into six right triangles as in Ficure 7. Note that
the labeling of the angles at the center is a famous fact from geometry that follows
when one considers the three isosceles triangles that together make up the inscribed
triangles.

First, we will find the volume of that part of the tetrahedron above a single one of
these triangles, the one that is shaded in the figure. Let’s call that volume V(a).

We need to form a triple integral as z ranges from \/1 —x® —y? to %, y ranges
from 0 to x tan @, and x ranges from 0 to cos a. Thus

COSa  ax tan a
V(a)—f f f —dzdydx

lx—j

cosafxtana 1
= ————— dydx
— .2 3
'/0‘ , 2(1 —x* —y?)
COS &y tan a
=f f 1 ( 1 N 1
0 o V1—x \V1-x2 —y 1-x% +y
COS & _ 92
=f 1 In 1—x% +xtan « e
o 41 — 2 V1—22 —xtan a

cos 1 V1—2x2 cos o+ xsin &
In dx.
0

41 — 2

dy dx

V1 —x2 cos @ —x sin

Substituting in x = cos 6, so V1 —x® =sin 6 and dx = —sin 6 d6, we obtain

1 (™% [sin(6+ @)
Zf ln(_—sin(e_a))de.

Letting u = 6 — «, the integral becomes

v =g [ n( S

We will use this formula as is. Thus, the volume of the entire ideal tetrahedron is
Vol(T) =2 V(&) +2V( B) +2 V(7).

Now, of course, this is not the most satisfying of formulas, as one would prefer a
closed form made up of elementary functions rather than a formula involving integrals
of natural logs of trig functions. However, for our purposes, it will suffice. Our goal is
now to determine the angles a, B, and vy that will give the maximum volume for this
ideal tetrahedron. To that end we will use Lagrange multipliers, with Vol(T) a
function depending on «, B, and v, and constraint a + B+ y — 7= 0. We find that
at the maximum,

Vi(a)=V'(B)=V'(y)=2A
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To compute V'(«), we need to take the derivative of an integral with respect to a
variable that appears in a limit of integration as well as in the integrand. Using the
chain rule and the fundamental theorem of calculus, we find

, _ 1. [sin(7/2+ ) 1 [™*%cos(u+2a)
Vi(e) = 41“( sin(ﬂ'/2—a))+ 4/0 sin(u ¥ 2a) 2™

1 1 (™% cos(w)

_ 1. [sin(m/2+ )
=0+3 ln( sin(2a) )

1 cos « 1 o
= § ln(m) = - § ln(251n a).
Thus, in order that V'(a) = V'( ) = V'(y), it must be that sin @ = sin 8= siny.
If it is not true that a = B =y, then it must be that one of the angles is 7, and the
other two are 0, but not surprisingly, this yields a minimum volume of 0. Thus,
the only possibility is =B =y= /3, and the regular ideal tetrahedron with all
dihedral angles equal to /3 is the hyperbolic tetrahedron of maximal volume.

As T gaze out upon you, I can see that your curiosity is piqued. Exactly what is that
volume? How big can a tetrahedron be in hyperbolic space? The volume of the ideal
regular tetrahedron is given by 6V(7r/3). Unfortunately, we cannot directly integrate
to find V(ar/3). But by numerical integration, V(/3) = .16915... and therefore the
largest volume for a tetrahedron in hyperbolic space is 1.01494. .. .

That number, 1.01494..., is our esteemed guest, the newest member in the
Number Hall of Fame. I am pleased to present to you V,, also known as the
Gieseking constant. She will make a few remarks.”

“Oh, what an honor it is to be up here with such an august group. I am thrilled to
be here. And it is appropriate that so many different kinds of numbers are present,
because the honest truth is that I do not myself know to what group I belong. Am I
rational, am I irrational? Am I algebraic or transcendental? I do not know the answers
to these most basic questions about my true identity. In time, perhaps, I will know
where I belong, but for now, I am a representative of all the diversity inherent in
numbers, exempt from the systematic classification so worshipped in our times.

As 7 mentioned, I am the largest volume of a tetrahedron in hyperbolic 3-space,
ideal or otherwise, and I occur exactly for the volume of an ideal regular tetrahedron.
In fact, I am the eldest sibling in a family of numbers. My sisters and brothers are the
volumes of the ideal regular n-simplices in hyperbolic n-space. They are also the
maximal volumes for any n-simplex, ideal or otherwise, in hyperbolic n-space. This
nontrivial fact was only proved in 1981 and appears in a paper by Haagerup and
Munkholm (cf. [2]).

I should explain where I come by the name “Gieseking’s constant.” H. Gieseking
was a mathematician around the turn of the last century. He realized that if one takes
an ideal regular tetrahedron and glues up pairs of faces by appropriate hyperbolic
isometries, one can create a hyperbolic manifold, appropriately called Gieseking’s
manifold. This manifold is interesting for a variety of reasons. First of all, it is not a
compact manifold. Because it is constructed from an ideal tetrahedron, the missing
vertices make it noncompact.
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Second, it has a volume exactly equal to me, which is to say 1.01494 ... . So here is
a noncompact manifold that still has finite total volume. Even though its arm reaches
all the way out to infinity, the cross section of the arm shrinks exponentially to 0 in
area, and the manifold still has finite volume.

Third, it is non-orientable. If we were all inside this manifold and you, 81, were to
walk through a face of the tetrahedron, you would suddenly appear to us to be 18.
You would be reversed right to left. Bit of a scary thought, isn’t it? Oh, no insult
intended, 18.

Fourth, it is double covered by the figure-eight knot complement. I won’t go into
details here, but this is a truly remarkable fact. It is one example of the tremendously
important ties between hyperbolic geometry and so-called “low dimension topology”
that were established by William Thurston in the late seventies and early eighties.

Finally, it is known that among all noncompact hyperbolic 3-manifolds, this particu-
lar one has the least volume (cf. [1]). So I am the least volume among all volumes of
noncompact hyperbolic 3-manifolds, orientable or otherwise.

At any rate, I just wanted to thank you from the bottom of my decimal point for the
great honor you have bestowed upon me. Now, I will turn the podium back over to
Six.”

“Well, thank you G.C., for those eloquent remarks. You know, numbers, she is too

9‘/§§Q[z‘/5](2)
9 2

modest to say it, but she is also equal to where {q; 5/(2) is the value

T
of the Dedekind zeta function for the field Q[u/g ] at 2 (cf. [4]). Of course, this makes
her quite intriguing to number theorists. Moreover, when divided by our friend 7,
she mysteriously produces the logarithm of the Mahler measure of the polynomial
1 +x +y (cf. [3]). Her unexpected appearances in a variety of disparate mathematical
locations make her a very enchanting and mysterious figure.

But I see from the amount of fidgeting in the audience that our time is up. We will
follow these ceremonies with the traditional banquet and karaoke contest. I want
to thank the organizing committee, which again consisted of the odd numbers less
than 8. Not too surprisingly, the menu for the banquet is a repeat of last year’s: prime
rib, 3-bean salad, 7-grain bread, and 5-layer cake for dessert. This year, we ask that all
integers greater than 999 and all decimal expansions please use the specially widened
food line to the left, so we can avoid the congestion, antagonism, and subsequent
chaos of previous years. I have been instructed to particularly request that the
Fibonacci numbers behave themselves. And again, thanks for coming. See you all
next year.”
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1. Introduction

“Even a fool,” remarked Paul Erd8s in one of his many lectures, “can ask questions
that the wisest man cannot answer.” This statement is true for many areas of
mathematics—perhaps nowhere more than in graph theory. The four-color theorem,
proved more than a century after it was proposed, illustrates Erd8s’s point. Another
example is Turdn’s “Brick Factory” Problem. Although it was thought for some years
to have been solved, flaws in the proof were discovered nearly twenty years later, and
it remains open today. In this article, we explore another combinatorial problem, one
that is simple to state and would seem to be provable by induction, but that has been
found to be tantalizingly difficult. It is a crossing number problem that can be stated
roughly as follows: For a rectangular grid on a torus, is there a planar drawing of this
graph that has fewer crossings than the one shown in Ficure 1? Attempts to solve this

FIGURE 1
c, xC,.

problem have used varying techniques, none of which has been entirely successful.
Below we give a brief history of crossing numbers; then we present our problem, its
history, and current status.

2. Origin of the crossing number problem

In 1977 the Hungarian mathematician Pal Turén wrote [19]:

In July 1944 the danger of deportation was real in Budapest, and a
reality outside Budapest. We worked near Budapest, in a brick factory.
There were some kilns where the bricks were made and some open
storage yards where the bricks were stored. All the kilns were connected
by rail with all the storage yards. The bricks were carried on small wheeled
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trucks to the storage yards. All we had to do was to put the bricks on the
trucks at the kilns, push the trucks to the storage yard, and unload them
there. We had a reasonable piece rate for the trucks, and the work itself
was not difficult; the trouble was only at the crossings. The trucks
generally jumped the rails there, and the bricks fell out of them; in short
this caused a lot of trouble and loss of time which was rather precious to
all of us (for reasons not to be discussed here). We were all sweating and
cursing at such occasions, I too; but nolens-volens the idea occurred to me
that this loss of time could have been minimized if the number of
crossings of the rails had been minimized. But what is the minimum
number of crossings? I realized after several days that the actual situation
could have been improved, but the exact solution of the general problem
with m kilns and n storage yards seemed to be very difficult and again I
postponed my study of it to times when my fears for my family would end.
(But the problem occurred to me again not earlier than 1952, at my first
visit to Poland where I met Zarankiewicz. I mentioned to him my “brick
factory” problem... .) This problem has...become a notoriously difficult
unsolved problem.

Turén’s statement puts the origin of the crossing number problem at mid-twentieth
century. Graph theory itself is not much older. Although Euler’s solution of the
K6nigsburg bridge problem appeared in 1736, mathematics historians date the rise of
modern graph theory to 1936. In that year appeared Theorie der Endlichen und
Unendlichen Graphen, by the Hungarian mathematician Dénes Konig [13]. Blanche
Descartes [6] light-heartedly emphasized this book’s significance in a “Hymn for
Graph Theorists”:

Graph Theory’s one foundation
Is Konig's famous book.

It gives an explanation—

If you will only look—

Of cycles, nodes and edges
And graphs complete, called K,
And how to cross your bridges
In an Eulerian way.

3. Basic notation and terminology

A graph G with n vertices (or nodes) and m edges consists of a vertex set
V(G)={v,...,v,} and an edge set E(G)={ey,...,e,}, where each ¢, is a two-
element subset of V(G). An edge e = {u, v} is usually written uv. Vertices u and v are
called endpoints of e. A drawing D of G in a plane P represents each vertex as a
distinct point of P and each edge uv as an open arc containing no vertices, joining u
to v in P. A crossing in a drawing is an intersection of two edges. In this paper, we
require that a drawing must satisfy three further conditions: (i) no two edges that
share an endpoint may cross, (ii) no two edges may cross more than once, and (iii) no
three edges may cross at a single point. A graph is planar if it has a drawing with no
crossings. Such a drawing is called a plane drawing of G. The crossing number v(G)
is the minimum number of crossings among all drawings of G in the plane. An
optimal drawing has v(G) crossings.
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A graph’s name may suggest its nature. For instance, a path P, has distinct vertices
Uy, Uy, ..., U, such that v,u,, is an edge, for i =0,...,n — 1. Similarly, an n-cycle C,
has distinct vertices vy, ..., v, such that all v,v,,, are edges, as well as v,v,. The graph
K, with n vertices and an edge connecting each pair of vertices is called the complete
graph on n vertices. A graph is bipartite if its vertex set comprises disjoint sets A and
B, such that every edge has one endpoint in each set. If [A|=m and |B|=n the

bipartite graph with mn edges is called complete bipartite and is denoted K,, ,,.

o Py

FIGURE 2
A subdivision of Kj.

In graph theory, as in other areas of mathematics, one derives new structures from
old. For example, H is a subdivision of G if H can be obtained from G by successive
operations of the following kind: Delete edge uv and add vertex w along with edges
uw and wv. We regard G as a subdivision of itself, having performed zero operations
of the required kind. Ficure 2 shows a subdivision of Kj. For graphs G and C,, the
Cartesian product graph G X C, is obtained by making n copies of G, then joining
corresponding vertices in a cyclic fashion. A plane drawing of P, X C, appears in
Ficure 3. This paper concerns C,, X C,,. Since it is isomorphic to C, X C,,, we shall
always write C,, X C,, with m <n.

m?

FIGURE 3
P, X C,.
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4. Useful results and techniques

In a plane drawing of a graph G a face is any maximal region disjoint from G. For
planar graphs the number of faces is determined by the number of vertices and edges
as the following results indicate:

EULER’S FORMULA: For a plane drawing of a connected graph with n vertices, m
edges and f faces, n —m + f = 2.

EDGE-VERTEX INEQUALITY FOR PLANAR GRAPHS: Any planar graph G with n vertices
(n > 3) and m edges satisfies m < 3n — 6. If, also, G has no triangles (3-cycles), then
m<2n—4.

For proofs, see [21]. Applying the edge-vertex inequality to Kj, which has five
vertices and ten edges, we see that K; is not planar. Similarly, the triangle-free Kj 4
is not planar. These graphs embody the essence of non-planarity in the following
sense: A theorem of Kuratowski [14] states that G is planar if and only if G contains
no subdivision of either K5 or Kj ;.

Many readers are familiar with the “Houses and Utilities” Puzzle, which asks
whether it is possible to connect three houses each with three utilities without the
utility lines crossing. If not, what is the least number of crossed utility lines? In the
language of graph theory, the problem asks: What is v(Kj; 3)? Since Kj; is not
planar, ¥(K; 3) > 1. Ficure 4 shows that v(K; ;) <1. Thus »(Kj3) = 1. This illus-
trates a useful technique for proving »(G) =n: Argue that any drawing of G must
have at least n crossings, then exhibit a drawing of G with n crossings.

FIGURE 4
K, 5 with 1 crossing,

5. Crossing number problems

In 1970, ErdSs and Guy [8] observed, “Almost all questions that one can ask about
crossing numbers remain unsolved.” Today there are still only a few graphs for which
crossing numbers have been established. Apart from elementary modifications of
graphs with known crossing numbers, the only graphs whose crossing numbers are
large and known are K, for 3<n <10, K, , for 3<m <6, C,, XC, for 3 <m <86,
and C,; X C,. An interesting introduction to these and other crossing number prob-
lems is found in [3].
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Ficure 3 shows that v(P, X C,) = 0. Indeed, it is easily seen that v(P, X C,) =0
for all m and n. However, establishing »(C,, X C,) is quite a different problem. How
does one determine »(C,, X C,)? Since graphs are finite structures, it seems that
double induction should be effective. After all, C,,,; X C, looks much like C,, X C,,
and induction is often used in graph theory proofs. W. T. Tutte once noted [20]:
“We...look at graphs, state...regularities as conjectural theorems, then try to prove
those theorems for all graphs, even for those soaring out of sight. It works sometimes,
usually by the grace of the principle of mathematical induction.” But this is apparently
not one of those times. For the values of m for which »(C,, X C,) is known for all n,
v(C,, X C,,) was established first. Then »(C,, X C,) was established by induction
on n. Induction on m has been so reluctant as to be nonexistent.

6. Early results on v(C,, X C,)

In this section we discuss the case m = 3. Here and in the sections to follow, we offer
proof summaries for some results, to suggest the flavor of the methods used.

FIGURE 5
C; X C5 with 3 crossings.

In a 1973 paper, Harary, Kainen, and Schwenk [11] used a drawing such as
Ficure 5 in their proof that »(C; X C;) = 3. They then conjectured that an analogous
drawing of C,, X C, (Ficure 1) would be optimal. More precisely:

The (m, n)-conjecture: Form <n, v(C, XC,) = (m—2)n.

Not until 1978 was the (3, n)-conjecture verified. In their proof, Ringeisen and
Beineke [16] used a pattern of three techniques which would be used repeatedly in
subsequent results on crossing numbers for C,, X C,. The first technique is edge-
coloring. The second identifies a situation that causes »(C,, X C,) to be at least
(m — 2)n. The third is induction on n. In a crucial lemma, Ringeisen and Beineke
used the first two techniques. From this lemma, the (3, n)-conjecture follows by an
easy induction. (A proof summary for the lemma appears after Theorem (3, n).)

THEOREM (3,3). v(C,; X C,) =3.

Proof summary. Ficure 5 shows that »(C5 X C;) < 3. Since all edges of C;X C,4
are essentially alike, if ¥(C5 X C;) were 1, removing an edge of C, X C; would result
in a planar graph. But Ficure 6 shows that C, X C; — {e} contains a subdivision of Kj
and hence cannot be planar.
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7 AN
[

A subdivision of K5 in C3 X C;—{e}.

Suppose next that »(C; X C;) =2, and that D is an optimal drawing. In D, color
red the concentric 3-cycles and blue the crossing 3-cycles. Is it possible for two red
edges to cross? If so, the definition of a drawing implies that the crossing red edges
must come from distinct triangles. In that case the two red triangles cross twice,
allowing no further crossings in D. Hence the third red triangle must lie entirely
inside or outside each of the other red triangles. Since blue triangles connect
corresponding vertices on all three red triangles, some blue triangle must pass from
the inside to the outside of the original red triangle, producing a third crossing. Thus
it is impossible for two red edges to cross. A crossing of two blue edges is similarly
impossible.

If ¥(C3X Cy) =2, then every crossing involves a red and a blue edge. Call e the
red edge of one crossing and f the blue edge of the other crossing. Removing e and f
leaves a plane drawing. Due to symmetry, there are only three possibilities for the
relative positions of e and f. In two cases, C5 X C; — {e, f} still contains a subdivision
of Ky, as shown in Ficure 7. This is impossible. For the third case, a result of
Whitney [22] shows that any plane drawing of C, X C; —{e, f} must be essentially

7 N\

FIGURE 7
Ks 5 in C3X Cs —{e, f}.
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FIGURE 8
A plane drawing of C; X C5 — {e, f}.

that of Ficure 8. But in that figure, ¢ and f cannot be redrawn without producing at
least three crossings. Thus there is no drawing of C; X C; with only two crossings,
and we conclude that »(C; X C;) = 3.

LEMMA 1. Forn >4, let D be any drawing of C X C,, in which no triangle has an
edge crossed. Then D has at least n crossings.

THEOREM (3,n). v(C3 X C,) =n.

Proof. We use Theorem (3, 3) as a base case for induction. Assume v(C, X C;) =k,
and suppose there is a drawing of C; X C;,, with fewer than k + 1 crossings. By
Lemma 1, some triangle has an edge crossed. Removing this triangle gives a draw-
ing of C3 X C; with fewer than k crossings, thus contradicting the induction hypothe-
sis. So every drawing of C3 X C;,, has at least k + 1 crossings. Since Ficure 1 shows
that there is a drawing of C;X Cp,., with k+ 1 crossings, we conclude that
v(Cy X Ciyy) =k + 1. This completes the induction.

Proof summary for Lemma 1. Let D be any drawing of C;X C, in which no
triangle has an edge crossed. Color the 3-cycles red and the n-cycles blue. Define the
responsibility of a subgraph H of a graph G to be the number of times the edges of
H are crossed. Thus if one edge of H is crossed by an edge of G not in H,
it contributes 1 to the responsibility of H, but if two edges of H cross, they con-
tribute 2.

Let the subgraphs H; of C; X C, be triangular prisms consisting of two successive
(red) triangles, T; on {a;, b;,¢;} and T, on {a,,1,b,,,¢;,1}, and their connecting

(blue) edges a;a;.,,b;b;,;,cic;,, (see Ficure 9). Since no edge of a triangle is

a; iyl

Ci Civl

b
FIGURE 9
The subgraph H,.
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crossed, all crossings must involve blue edges. For a given H,, there are two
possibilities: Either H, is planar, or H; has two edges that cross. In the latter case H,
clearly has responsibility of at least 2. In the former the responsibility of H; is due to
edges outside H, crossing edges of H,. Because no triangle is crossed, T;,, must lie in
one of the quadrangular faces of H;. Since blue n-cycles connect successive a; (or by
or ¢;), an examination of cases shows that some blue cycle must cross H, at least
twice. Thus H; has responsibility at least 2. This gives C; X C,, a total responsibility of
at least 2n. Since each blue edge is in exactly one H;, D has at least n crossings.

7. The middle ground

Beineke and Ringeisen [4] soon went on to verify the (4, n)-conjecture. Using edge
coloring, a particular situation, and induction, they showed that »(C, X C,) = 2n.
Their induction used as a base case a result of Eggleton [7] showing that »(C, X C,)
=8. Here we outline a more recent proof, due to Dean and Richter [5]. The
following lemma aids their argument.

LEMMA 2. Every optimal drawing of C, X C4 contains a 4-cycle that is crossed at
least four times.

THEOREM (4,4). v(C, X C,) =8.

Proof summary. Suppose that »(C, X C,) < 8 and that D is an optimal drawing of
C, X C,. By Lemma 2, D has a 4-cycle that is crossed at least 4 times. Removing the
4-cycle leaves a drawing of C;X C, with fewer than 4 crossings, contradicting
Theorem (3, n). Therefore v(C, X C,) = 8.

Any drawing of C,, X C, has many 4-cycles. Principal 4-cycles are analogous to the
3-cycles or n-cycles in C; X C,,. To verify the (4, n)-conjecture, Beineke and Ringeisen
adapted their “responsibility” argument of Lemma 1 to prove the lemma below.
Theorem (4, n) follows by induction and is left to the reader.

LEMMA 3. If D is a drawing of C, X C, in which no principal 4-cycle has more
than one crossing, then D has at least 2n crossings.

THEOREM (4,n). v(C, X C,) =2n.

8. Recent results

The most recent results on the (m, n)-conjecture are due to Richter and Thomassen
[15], KleSc, Richter, and Stobert [12], Anderson, Richter, and Rodney [1,2], and
Salazar [17].

In 1995 Richter and Thomassen published proofs of Theorem (4,4) and Theorem
(5,5) using methods quite different from those we have reviewed so far. They began
by introducing curve systems. A curve system comprises two families of curves, with
the property that every curve in one family must intersect every curve in the other. By
considering conditions of separation, disjointness, and optimality, they determined the
smallest number of intersections that such curve systems can have.

Richter and Thomassen view a drawing of C,, X C, as a curve system having one
family of nm-cycles and another family of mn-cycles. Vertices provide the required
intersections. Essentially, when m = n = 4, they prove that such a curve system has at
least twenty-four intersections. Since C, X C, has sixteen vertices, there remain at
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least eight crossings. Similarly, Richter and Thomassen show that a system of
two families of five curves each has at least forty intersections. Thus any drawing
of C5XCjy has at least fifteen crossings. This fact and Ficure 1 verify the (5,5)-
conjecture.

THEOREM (5,5). »(C5 X Cy) = 15.

In an undergraduate honors project guided by Richter, Stobert [18] proved the
following extension. Since it was also proved independently by Kle3c, the three
produced a joint paper [12].

THEOREM (5,n). v(C5 X C,) = 3n.

Proof summary. Klesc, Richter, and Stobert employ the now-familiar pattern of.
proof originated by Ringeisen and Beineke. Using red 5-cycles and blue n-cycles, they
argue through several cases that if a drawing D of C5 X C, contains no red 5-cycle
with more than two crossings, then D must have at least 3n crossings. If there is a
5-cycle with at least 3 crossings, they apply the induction assumption after deleting the
5-cycle.

Anderson, Richter, and Rodney continued the use of curve systems, and verified
the (6,6)- and the (7, 7)-conjecture. Salazar extended their results to C4 X C,,. Thus:

THEOREM (6, n). v(Cq X C,) = 4n.
TueoreM (7,7). v(C, X C;) = 35.

Salazar also showed that, for an arbitrary integer M, the minimum number of
crossings in any drawing of C,, X C, in which no two n-cycles cross more than M
times approaches (m — 2)n as n approaches infinity. “Thus in some sense,” wrote
Salazar in a letter to the author, “we can say that the [(m, n)-conjecture] is asymptoti-
cally true.”

9. Conclusion

One wonders how much hope there is of establishing »(C,, X C,) in general, given
the slow progress made since the initial conjecture. As we have seen, for v(C,, X C,),
the m-values have resisted an inductive argument. What seems missing is some
general method of relating »(C,,,, XC,,,,) to »(C,, X C,) orto »(C,, XC,, ). On
the other hand, it may be that the question of the crossing number of C,, X C,, is
simply one that “the wisest [person] cannot answer.”
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Unity in a Field

I was running through a field,

On a normal, warm spring day,
Though it seemed a bit improper,
I felt free in my own way.

This independent feeling—

A direct product of my mind,

Of which the field’s an extension,
Had a basis I could find.

The field was not complex.
Though it seemed a bit unreal.
I thought it spanned forever.
But it’s finite, I now feel.

I saw a ring of operators,
Radicals, no doubt.

They were planning a group action.

And quickly closed me out.

So I formed a group myself.

My identity sufficed.

You may think that it was trivial.
But I thought it was nice.

Some say it would be ideal,

Were 1 to find a friend.

But here there are just two ideals,
The Field and me. The End.

—H. G. GruNDMAN
Bryn Mawr COLLEGE
Bryn Mawr, PA 19010-2899
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1. Introduction

Students of differential equations are familiar with power series solutions of second-
order linear differential equations with variable coefficients, written

a(t)y"(t) +b(t)y'(¢) +e(t) y(t) =f(2). (1)
The standard textbook method suggests that one assume the existence of a power
series solution, substitute this into the equation, rearrange the relevant power series,
and then equate coefficients of like powers; this yields recurrence relations for the
power series coefficients.

We will outline a method, which goes back to Cauchy, augmented by our use of the
Leibnitz formula for product differentiation. Combining these two ideas provides a
method that is vastly more efficient—both pedagogically and from the standpoint of
symbolic algebra manipulations. In particular, one can write down the recurrence
relation by inspection, without any computations. A complete discussion of this and
related issues appears in our book [3]. In the final section we briefly discuss the

history of Cauchy’s method.

2. Essentials of the method

First we outline the method for the general second-order linear ordinary differential
equation (1). We assume that the coefficient functions a, b, ¢, f have convergent
power series expansions around the base point ¢ =t,, and that a(¢,) # 0. We search
for a power series solution

y(t) = iYn(t—to)"‘= f) %(t—to)".

n=0
The values of y and its successive derivatives at the base point are given by

y(to) =Yo =10,y (t,) = Y1 =11, y"(t;) =2Ys=ys, ..., y"(t,) =nl¥, =y,
and similarly for a, b, ¢, f. To simplify the formulas below, it is convenient to work
with the y, coefficients. Thus we write

oo [e<]

«0= ¥ -t b= T )"
()= ¥ E(t=ty)", and f(1)= ¥ (i1,

n=0 n=0

where a, = a®(t,), and similarly for b, ¢, and f.
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We also need Leibniz’s binomial formula for product differentiation ([8], p. 540)

n

(AB)(”)= E (Z)A(k)B(an)' (2)

k=0
When n =1 and n =2 this specializes to the familiar Leibniz rules
(ABY =AB'+AB; (AB) =AB"+2AB +A'B.

If y(¢) is a solution of the differential equation (1) with given initial conditions
y(ty) =y, and y'(¢,) =y,, then substitution in (1) at the base point reveals

agyy +boyy +coyo =fo; (3)

this gives the coefficient y, in terms of {ay, by, ¢y, Yo, y1, fo}. Differentiating (1) at
the base point gives

(aoys+arys) + (boys+byy) + (coyy +c1Yyo) =fis (4)

which can be solved for y; in terms of y, (the solution to equation (3)), and
{ag, a1, by, by, ¢y, €1, Yo, Yy, f1). To obtain a general formula for y,, we apply the
binomial derivative formula (2) to (1) to obtain, for n=0,1, ...,

Ao Yn+o + Z (Z)akyn+2—k + Z (Z)(bkyn+1~—k +Ckyn—k) =fn’ (5)
k=1 k=0

where we have isolated the first term involving v, ,,.

This is the general form of the recurrence relation. We required no re-labeling of
sums or “index-shifting.” It is especially easy to remember if we note the descending
levels of homogeneity of the indices: the terms involving @; have indices totalling
n + 2, the terms involving b; have indices totalling n + 1, and the terms involving c;
have indices totalling n.

ExaMPLE. We illustrate with the Airy equation y” — ¢y =0 with initial conditions
y(0)=0 and ¢'(0) = 1. Here we have b(¢t)=0 and c(t)= —t, so b, =0, ¢; = —1
and ¢, = 0 otherwise, and y, =0, y, = 1. The recurrence relation (5) gives

y,=0 and y,,, —ny, , =0 for n>1.

It follows easily that 0=y, =y, =y;=ys =15 =yg= """ =Ygz, =Y3,,,, and that
yy=2y, =2; y;, =5y, =5X2. In general,

Ysn+1 = 2XBX X (3n - 1)’
which gives the required solution

2t*  10¢7 2X5X - X (3n —1)¢3" !
y(t)—t+71T+-7!-—+ + (31’l+1)! +

3. Proof of convergence

It is not difficult to prove the convergence of the power series solution obtained by
this method. Cauchy’s “method of majorants” [6] works as follows: replace the
coefficients a(t), b(¢), c(¢), f(t) by power series for which we can solve the equation,
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and which serve as suitable upper bounds for these coefficients. Since any power
series that converges for |t —t,| <R is dominated by a suitable geometnc series, it is
natural to consider majorants of the form b(¢)=(1— (¢t —t,)/R)~' and closely
related functions. On the other hand, the function Y(¢) = (1 — (¢t —t,)/R) ™" is easily
seen to be the solution of a Cauchy-Euler equation of the form

BY' ~ cY _
(1=(t=t)/R) (1—(t—t,)/R)

Y”_

for suitable values of B,C, R, and r.
Since a(t,) # 0, we have a(t) # 0 in some interval about ¢,, so we can divide
equation (1) by a(t) and restrict attention to equations of the form

y +b(t)y'(t) +e(t)y(t) =f(1). (6)

The homogeneous equation First we consider the homogenous equation

y" +b(t)y' +e(t)y=0. (7

A further simplification is to replace (¢ —¢,)/R by t, which is equivalent to assuming
that t,=0 and that the functions b(¢), c(¢) have power series that converge for
|t| < 1. The problem, then, is to show that the power series solution converges for
|t < 1.

Since the given power series are convergent at ¢ =1, the coefficients must be

bounded:

<B, —%<C, n=0,12,...,
n!

where B and C are positive numbers. We now consider the related functions

oo <] E
T—;= L Bt Z o7t
n=0 n=0
and
Z C
Z C(n+1)th= Y, ¢,
(l_t) n=0 n=0 n!
where ‘
|b,|<Bn!=b, and |c,|<C(n+1)!=5,. (8)

We now consider the initial-value problem for the Cauchy-Euler equation

YI(8) = TR (f) — g V(1) =0, Y(ts) =0, Y'(t,) =7

C
(1-1)

As mentioned above, a trial solution is sought in the form (1 —¢)™". Since this
equation is linear and homogeneous it is natural to look for the general solution in the
form

Y(£)=a(l—t) " +ay(l—t) "= i y—, , (9)
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where @, a, are constants and r, and r, are the roots of the quadratic equation
r(r+1) — Br — C = 0. This quadratic has two real roots r; <0 <r,, where

2r ,=(B-1)+V/(B-1)>+4C.

Using the initial conditions Y(0) =%, and Y'(0) =7%,, we can solve for a, a, to
obtain the required solution Y (¢).
From the recurrence relation of equation (5), we must have

Tnva = L (Z)(‘bkym_k + 6ok ) =0, n=0,1,2,.... (10)
=0

This shows the important fact that if %, >0 and %, > 0, then 7, > 0 for all n.

To obtain two linearly independent solutions of (7), we first take (y,, y,) = (1,0),
then (y,, y,) = (0, 1); in each case we use the same values for (7, j,). We propose to
show that |y,|<7y, for all n. This is clearly satisfied for n=0,1 by definition.
Assuming that the inequality holds for the indices 2, ..., n + 1, we conclude from (5),
(8), (10) that

lyn+2| Z( )(bkyn+l k +Ckyn k)

<X ( (B +27)

= yn+2 :

Thus the coefficients y, are majorized by the coefficients of a convergent power
series, so the series Ly, t"/n! is convergent, as desired.

The inhomogeneous equation To complete the proof, it suffices to find a particu-
lar solution to the inhomogeneous equation, since the general solution of (6) is the
sum of a particular solution together with the general solution of the homogeneous
equation (7), just constructed.

Again, we relocate the origin and rescale so that t, =0 and the power series for
b(t), c(¢), and f(¢) converge for [¢t|<1. In particular, all the coefficients must be
bounded at ¢ = 1:

Ib,| |,

nl n!

for positive constants B, C, and F. Now examine the polynomial

p(r)y=r(r+1)—-Br-C.

Let r=((B—1)+\/(B—1)2+4(C+F) )/2; note that r>0 and p(r)=F.
Hence we have the bounds

F(n+r+1)!
(r+1)! "

|b,|<Bnl=b,, |c,|<C(n+1)!=¢,, |f.|<

n>

Now consider the function

V() =(1-0"= L B
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Direct computation shows that Y(¢) satisfies the equation

B L C __F 5t
R CEDRAY (1—t)2Y(t) (1-t)"° Eonlt'

Hence the Taylor coefficients satisfy
0< g'n.+2 = Z (Z )(Ek yn+1—k + Ek yn—k ) +fn :
k=0

We obtain a particular solution by taking y,=1= ¥, and y, =r= ¥, and define
the higher Taylor coefficients by solving the recurrence relation (5). The Taylor
coefficients 7, of the majorant are all non-negative; we propose to show by induction
that |y,| <y, for all n. This is true for n = 0,1 by definition; assuming the truth for
Yoo Yut1, We have

>

sl <11+ 2 (1) +emn)
=0
; + Z (Z) blsyn+1 k +Ckyn k)
k=0

“Yn+os

this completes the proof. We have found a particular power series solution of the
differential equation (6).

4. Extension to N'™"-order equations

To extend the previous method to general N'"-order equations, we first introduce a
convenient notation. The general N "-order linear differential equation is written

P () y () +pyoa () y &P () + o +po(8) y(8) =1(2), (1)
where py(t,) # 0. If we define
P=(py(t), pny-1(£).- . po(t))
Y=(y™(), y "), y(1)),
then equation (11) can be written
P-Y=f(t). (12)

Again, the general form of the n™-order recurrence relation requires that we
repeatedly differentiate equation (12) at the base point. Note that

(P-YY=P-Y+P Y and
(P-Y) =P-Y'+2P Y +P Y.
More generally, Leibniz’s binomial derivative formula gives

(P- Y)(") = i (Z)P(k) LY®h),

k=0


http://www.jstor.org/page/info/about/policies/terms.jsp

VOL. 71, NO. 5, DECEMBER 1998 365

This formula is identical to the original Leibniz formula for product differentiation
where ordinary multiplication is replaced by the dot product.

If f(¢) and P(¢) have power series expansions around the base point ¢ = ¢,, then we
may write

(t)=2f—, )" and py(t) = ), ()" for k=01,

n=0

and search for a power series solution of the form
[ee]

y(1) = 3, Lr(r—1)".

n=0

If y(¢) is a solution to equation (11) with initial conditions y(¢,) =y,, y'(t)) =
Y - YN P(2,) = yy_,, substitution into equation (11) at the base point yields

(P-Y=£())li-t, = Pov.oyYw + Pov-1,00Yn-1 + *** +P0,0 Y0 =So-

This can be solved for yy in terms of {p y o), P(v-1 0)>- > P(0,0y fo} and the initial
conditions {yy_, Yy_s,- .-, yo}. This is precisely the extension of equation (3) to the
N order equation. If we differentiate equation (12) n times and apply the binomial
formula, we obtain

(CRRE R0 I ) ERS T (1)
k=0

We may also rewrite equation (13) by isolating the only term involving y,, ., and
then solving for y,,y to obtain the desired solution. This yields a form that extends
equation (5) to the N "-order case: for n=0,1,.

N n
Pv,oyYnin T 2 PN—k,0)Yn+n-k T Z (Z)Pk Y, =fo (14)
k=1 k=1

5. Extension to singular equations

The methods discussed above are easy to extend to second-order equations with a
regular singular point, such as the Bessel equation.

Reformulation of the method The most general second-order homogeneous
equation with a regular singular point at ¢ =t is written

(t=t0)"y" + (£ =t0) p(t) y' +q(t) y =0,

where p(t) and ¢(¢) are assumed to have power series expansions

o2} o2}

p(t)= 3 Bre-1)", q()= Y Lr(r—r)",

n=0 n=0

which are convergent in some interval [¢ —¢,| < R.
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From the work of Frobenius ([1], Chapter 4), it is known that there exists a power
series solution, of the form

y(0) =l =t Y, Lt —1)",
n=0

where r is the larger root of the indicial equation
r(r—1) +por+q,=0.

As in the previous discussion, it is no loss of generality to take t, = 0 in what follows.
In the subsequent treatment we illustrate Cauchy’s method in case the larger root is
r=0. The reduction from the general case to this case is carried out in complete
detail in our book ([3], Chapter 21).

Since r = 0 is the larger root, we must have

qo=0, po=1.

To find the coefficients y, we apply the product rule to each term in the equation:

[£247]™]_o = (24 + 20y "D 4 n(n — 1) y®)],_g = n(n = 1)y,
[tp(t) y/](1l)lt=0 = Z (Z)kpk—l Yn+1-k >
k=1
[a(t)y] )0 = k; (Z)qk Yot

(We used the easily-proved fact that [tp(t)I*®|,_o = kp,_,.) This yields the recurrence
relation in the form

n(n—1)y, + k; (Z)kpk—l Yor1-k + k; (Z)Qk Yn—i =0. (15)

In particular, for n=1,2,3:
Poy1+ 4190 =0,
(2+2po)ys+ (2p1 +2G1) Y1 + G240 =0,
(6+3pg)ys + (6p1+391) ys + (3py +392) Y1 + G50 =0.

We note that, in contrast with the power series solution about an ordinary point, the
sum of the indices in each term in the recurrence relation is constant. We note also
that the higher coefficients are uniquely determined by y,; indeed, since p, > 1, we
see that the coefficient of y, is n(n — 1) +np,=>n®#0 for n > 1.

ExaMpLE. We illustrate by finding a power series solution of Bessel's equation of
order zero: t2y" +ty' + ¢y = 0. Here p(t) =1 and q(¢) =t2, so p,=1, g, =2 and
all other coefficients are zero. The recurrence relation for y, reduces to y, =0 and,
for n > 2,

nzyn +1’l(1’l - ]') yn—2 =0.
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Thus y, = 0 for odd n; for even n we have

B T T ER s Lo [(2m)]2 Yo

which gives the well-known power series for J,(¢) when y, = 1.

Proof of convergence Convergence can be proved directly, beginning with
equation (15). We assume that R=1 so that the coefficients are bounded by a
constant A > 1:

<A, |#|<a k=012
k' = k! - > 3Ly My

We set Y, =1y, /k!, so that from equation (15) we have
| Y| < (n(n —1) +"Po)|yn|<"'(A LY [(n+1-k)+A E Y,
Dividing both sides by nn! results in the inequality
Y, |< . Z Y, .

We have Yy=1 and Y, =1q,/pol <A. We show by mathematical induction that
for all k,

|Y,|<Ak* where a=2A-1.

Indeed, this is true for k = 1; assuming the truth for k=1,..., n —1 we have
o 24 AntD
|<——Z|Yk|_ Z‘,Ak ST = A

Therefore, the power series ¥, Y,t" converges for |¢| < 1, which was to be proved.

6. Historical notes

Cauchy’s original paper was published on July 4, 1842, under the title Memoire sur
I’emploi du nouveau calcul, appellé “calcul des limites’ dans I’ mtegmtwn des equations
differentielles [4]. In this work it is first noted that any single N th_order differential
equation, in general non-linear, can be written as a system of first-order equations.
Then it is shown that if all of the defining functions are analytic in the neighborhood
of the base point, the system may be differentiated successively at the base point to
find the Taylor coefficients of the unknown solution. The ‘calcul des limites’ refers to
finding a suitable majorant equation in order to prove convergence of the resultant
power series.

Cauchy’s method was well exposited in textbooks in the earlier part of the twentieth
century, especially in the very popular book of Goursat [7]. The method seems to have
been largely forgotten in the post-war period, with the exception of [2]. For the
specific case of second-order linear equations, the recurrence formula is derived in
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[5]. More recently Strichartz [6] gave this derivation together with the explicit
construction of majorants for linear second-order equations, as we have done. None of
these works uses the streamlined formulation possible with the binomial formula.

Acknowledgment. We would like to thank the referee for several helpful comments, and to thank the
editor for a careful reading which led to many useful suggestions for an improved exposition.
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NOTES

Will the Real Non-Euclidean Parabola
Please Stand Up?

MICHAEL HENLE
Oberlin College
Oberlin, OH 44074

The parabola has two outstanding geometric properties: the locus property (it is the
locus of points equidistant from a point and a line) and the reflecting property (it
reflects parallel lines to a single point). While the locus property is usually considered
the defining property of the parabola, the reflecting property also distinguishes
parabolas among all other plane curves, and hence could be taken as its definition in
the Euclidean plane.

Surprisingly, however, the curves satisfying these properties in the hyperbolic
(Lobachevskian) plane are different. This raises the question: What is the real
non-Euclidean parabola: the curve satisfying the locus property, or the curve satisfying
the reflecting property?

The purpose of this note is to derive equations for both these curves, and addless
this question. This extends the discussion of non-Euclidean parabolas begun by Ron
Perline [2]. Perline used Poincaré’s half-plane model. Our treatment uses homoge-
neous coordinates.

Homogeneous coordinates A point P in the hyperbolic plane has three homoge-
neous, real coordinates
P=(xy.%) )

where z®—x%—y?> 0 and we usually assume also z > 0. These points are in the
interior of a cone in three-dimensional Euclidean space, the cone, &, with equation
2% —x? —y? = 0 (see Ficure 1). As usual with homogeneous coordinates, any non-zero
scalar multiple of the coordinates (1) represents the same point in the hyperbolic
plane, ie., P also has coordinates (kx, ky, kz) for any k # 0. When we need unique
coordinates for P, we normalize by choosing k = (22 —x% — 4?)7*/% which puts P on
the upper sheet of the hyperboloid of two sheets, #, with equation: z* —x* —y* = 1.

Let us call Z the hyperboloid model. This is the model of hyperbolic geometry
that is closely linked to the theory of relativity. The hyperboloid # is the “unit
sphere” of three-dimensional Minkowski space. In turn, # is connected with the disk
model by stereographic projection.

These concepts are depicted in Ficure 1. The cone, %, is a wire frame; the
hyperboloid, 7, is gray. The thick line, determined by the point P and the origin,
represents a single point in the hyperbolic plane. The normalized representative of
this point is the point P. Stereographic projection from the point S with Cartesian
coordinates (0,0, —1), is depicted by a thin line, and maps P, on the hyperboloid,
to Q, inside the unit disk in the (x, y)-plane.

Straight lines Although less familiar than the disk and half-plane models of
hyperbolic geometry, the hyperboloid model possesses a number of advantages. In the

369
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FIGURE 1
The hyperboloid model of hyperbolic geometry.

first place, the equation of a straight line is linear. If the coefficients a, b, ¢ satisfy
c? —a* —b* <0 (and we usually assume ¢ > 0 also), then the set of solutions (1) of
the equation
ax+by +cz=0 (2)
is a straight line in the hyperbolic plane. We take L = [a, b, c] as homogeneous line
coordinates. As with point coordinates, any non-zero scalar multiple [ka, kb, kc]
also serves as coordinates for L. When we need unique coordinates, we choose
k =(a®>+b*—c?)"'/%. Regarded as a vector with its tail at the origin, the normalized
L has its head on the hyperboloid of one sheet with equation: z> —x*—y?= —1,
which we call #*. Normalized or not, the vector L is normal (i.e., perpendicular) to a
plane through the origin whose intersection with /# is the hyperbolic straight line of
equation (2).
All this can be observed in Ficure 2. The wire frame is the hyperboloid of one sheet
#*; the hyperboloid of two sheets, #, is still gray. The vector L determines a

FIGURE 2
A straight line in the hyperbolic plane.
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hyperbolic straight line, depicted as a thick curve on #Z. The stereographic projection
of this line is the thick curve in the (x, y)-plane: a circular arc perpendicular to the
unit circle.

Mensuration formulae We now list the elegant formulae used to calculate dis-
tances and angles in homogeneous coordinates. Let P=(x,y;,%;) and Q=
(x5, Y4, 25) be two points. We need two scalar products: the usual dot product

P-Q=uxx,ty Yy, +2,2,
and the Minkowski product
(P,Q) =z,2, — %%, ~Yi1Yo,
plus the norm
e

IP] =1<P. P

(A) Given two points: P =(x,, y;, z;) and Q = (1, y,, z,), the line L determined
by P and Q has homogeneous coordinates

L=P><Q=[ylz2-yzzl’_x1z2+x2z1’x1y2_x2yl] (3)
and the distance, d(P, Q), from P to Q is

HP, Q) = arccosh (‘ I ) *)

(B) Given a point and a line: P = (x, y, z) and L =[a, b, c], the perpendicular from
P to L is the line, M, with coordinates

=[ey + bz, —(az +cx), ay — bx] (5)

and the distance from P to L is

d(P,L) = arcsinh (l% ’) (6)

(C) Given two lines: L =[a;,b,,c;] and M =[a,, by, c,], let

(L, M)

k= |t
LM

Then L and M intersect, are parallel, or are hyperparallel according as k <1, k=1,
or k> 1. If L and M intersect, the point of intersection is P = L X M, and the angle
of intersection is

[{L,M)| ) %

0 = arccos (k) = arccos (—
(5) TLTT™]

If L and M are hyperparallel, then their unique common perpendicular, called the
axis of L. and M, is the line with coordinates

K= [_blcz+b201>0102_‘1201’albz_azbl] (8)

while the shortest distance between L and M is s = arccosh (k).
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These formulas are derived in Coxeter [1]. We won’t need all of them (but to leave
even one out spoils their elegance as a group). Note that (5) and (8) are not cross
products (but do have some cross product-like properties). Finally, although we use
homogeneous coordinates for calculation, we draw figures in the disk model (where
straight lines are arcs of circles perpendicular to the unit circle) because this gives
such a good overall view of the hyperbolic plane.

The locus property Armed with these formulas, let’s find the equation of the curve
in the hyperbolic plane that is the locus of points equidistant from a given point F and
line L. For convenience we put F on the x-axis a unit distance from the origin. The
line L. we also place a unit distance from the origin, perpendicular to the x-axis. (See
Ficure 3.) The result is that the origin, being equidistant from F and L, is on the
locus, in fact, is the vertex of our “parabola.”

P=(X.Y.Z)
g dy -
dy
L 1
—
F=(-s5.0.c) (s.0.¢) x
: L=[-c.0.s]
FIGURE 3

Points P such that d, = d, form a parabolic locus.

We need coordinates for F and L. Since the x-axis has coordinates [0, 1,0] (its
equation is y = 0), F has coordinates (x,0, z) for some x and z which we assume, for
simplicity, are chosen so that F is normalized: z® —x® = 1. The distance from F to the
origin (0,0,1) is 1, so the distance formula (4) gives z = cosh(1). Therefore,
x = —sinh (1) and F has coordinates (—s,0, ¢) where s = sinh(1) and ¢ = cosh(1).
Next, since L is the perpendicular to the x-axis at the point (s,0,c¢), the point
symmetric to F on the other side of the origin, L =[—¢,0, s] by formula (5).

Let P =(X,Y, Z) represent any point on the locus. We assume that P is normal-
ized. Then d, = arccosh([{P,F)]) according to formula (4). On the other hand,
dy = arcsinh ([P - L|) by formula (6). Setting these equal,

[cZ+sX|=V1+ (sZ—cX)® (9)

and solving together with the normalization condition: Z* —X*—Y?=1, gives the
equation
Y?= —4osXZ, (10)
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Av

FIGURE 4
The locus of points equidistant from F and L.

whose graph, in the disk model of the hyperbolic plane, is given in Ficure 4. Equation
(10) is preferable to equation (9) not only because it is simpler, but because, being
homogeneous, it is satisfied by all coordinates of points on the locus, not just
normalized coordinates.

Ficure 4 looks quite like a Euclidean parabola, although perhaps a bit too bent at
the “vertex.” Equation (10) is also very like the equation of the Euclidean parabola
under analogous circumstances: y? = —4x. We return later to the question of the
genuineness of this parabola.

Ly
s=(-101) F /Vz(s,O,c) e

FIGURE 5
The reflecting property in the hyperbolic plane.
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The reflecting property We turn to the parabolic reflector: a curve that reflects
parallel rays (coming from a given ideal point) to a given ordinary point. We place the
source of the light rays, S, on the negative x-axis and the focus, F, at the origin. Our
goal is to find the equation of the “parabola” passing through the point V= (s,0, ¢)
on the positive x-axis. (See Ficure 5.)

Let P=(X,Y, Z) represent an arbitrary point on the reflector. We need homoge-
neous coordinates for the tangent line to the curve at P. Therefore, let P, be a second
point on the curve, and consider the secant joining P and P, whose homogeneous
coordinates, according to formula (3), are

i j k i i k
P XP=|X, Y, Z|=|X,-X Y,-Y 2z -Z|
X Y Z X Y z

Taking the limit as P, approaches P, we get T =P’ X P where P'=(X",Y’, Z').
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—

FIGURE 6
Points P such that a = B form a parabolic reflector.

The defining condition of the reflector is that the angles a and 8 in Ficure 6 are
equal. Formula (7) can be used to find these angles. For this purpose, let L, be the
ray from S to P, and let L, be the line from F to P. Then

cos(a) = ‘ (L, T) (Ly, T)
(o 1N ol e T

where L, =S XP=[-Y,X+Z,—Y], and L,=F X P=[-Y, X,0]. Using the eas-
ily verified formula

and cos(B) =

_ (A,C) (B,D)
(AXB,CXD)= (A.D) (B.C)|
we get
(LI,T) =(SXP,P'XP)={(S,PYP,P)—(S,PYXPP)
and

(Ly, T) =(FXP,P' XP)=(F,P)P,P) — (F,P){P,P).
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We now assume that P is normalized, so that (P, P) = 1. By differentiation, it follows
additionally that (P,P’) =0, so now (L, T)=(S,P')=Z"+X' and (L,,T) =
(F,P') =7 Thus,

con(ay=| 2K L
Z+X 17|
and
Z' 1 VA 1
cos( B)= = .
s R =i
Setting these equal, we get the differential equation
Z +X' VA
+ p—

which integrates to

+In|X+2Z|=In|Zz+VZ*—1|+cC.

The plus sign leads to a degenerate solution, but the negative sign, combined with the
normalization condition (Z%—X%—Y2=1) and initial conditions (X,=s,Y,=0,
Z, = c), yields the homogeneous equation
Y?= LQ(X'FZ)(CZ—SX)
(s+¢)

whose graph, in the disk model of the hyperbolic plane, is depicted in Ficure 7.
What is the real hyperbolic parabola? There is no definitive answer to this
question. Certainly both the curves derived above have important geometric proper-

ties characteristic of Euclidean parabolas. Both curves also have quadratic equations.
Which do you prefer?

Ay

S T—

w

FIGURE 7
A parabolic reflector in the hyperbolic plane.
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My own inclination is to regard the curve in Figure 7 as more genuinely parabolic
than the one in Figure 4 because it tends, in the limit, to a single ideal point while the
curve in Ficure 4, like a Euclidean hyperbola, tends to two ideal points.

REFERENCES

1. H. S. M. Coxeter, Non-Euclidean Geometry, 5th Edition (1965), Univ. of Toronto Press.
2. Ron Perline, Non-Euclidean flashlights, Amer. Math. Monthly, 103 (1996), 377-385.

Math Bite:
The Volume of a Cone, Without Calculus or Square Roots

The volume V of a cone is a third the base A times the height H. M. Hirschhorn [1]
obtains this relationship, and from it the volume and surface of a sphere, without
calculus but with many square roots. Here we eliminate the square roots, and
moreover obtain 3V = AH for any cone whose base is dissectable into squares whose
total area, summed as a convergent series, is that of the base. (For example, a circular
base of unit area admits such a dissection, but not when riddled with a series of holes
of area 1/4,1/8,1/16,... centered on an enumeration of its rational points.) Such a
dissection induces a dissection of the cone into pyramids, whence to prove 3V = AH
for such a cone it suffices to do so for a pyramid.

Any pyramid of nonzero volume can be transformed into any other by an affinity, a
linear transformation composed with a translation. Affinities preserve the ratio of
volume to base-times-height, whence it suffices to demonstrate 3V = AH for a single
pyramid. The pyramid formed by the center and one face of the unit cube does the
job, having V'=1/6 by symmetry, H=1/2, and A= 1.

The surface area of a sphere Hirschhorn uses the volume of the cone to derive
the relationship 3V = RS between the volume V and surface area S of a sphere of
radius R (easy), and also to derive the formula for V itself in terms of R (harder),
thereby obtaining S.

An alternative to the harder step is to obtain § first and apply 3V =RS to get V.
For S, observe that a cylinder of radius R containing the sphere, and truncated at
each end where the sphere ends (the same cylinder Hirschhorn uses to obtain V'), has
area the perimeter 27 R times the length 2 R, namely 47 R®. We show that the sphere
has the same area.

Orienting the axis of the cylinder vertically, pair up points on the two surfaces via
perpendiculars to the axis. This pairs up very small rectangles on the cylinder with
very small rectangles on the sphere. Any such rectangle P on the cylinder is wider
than its counterpart Q on the sphere in the ratio R/r where r is the distance of Q
from the axis. But Q is taller than P by the same ratio because the tilt of Q from the
vertical equals the tilt of the radius OQ (O the center of the sphere) from the
horizontal. So the paired rectangles have the same area, whence so do the whole
surfaces.

REFERENCE
1. M. Hirschhorn, The volume of a cone, without calculus, this MAGAZINE 70 (1997), 295—296.

—VAUGHAN PratT
StanForp UNIVERSITY

Stanrorp, CA 94305-9045
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Proof Without Words:
The Length of a Polygonal Arch

The length of the polygonal arch generated by one vertex of a regular n-gon rolling
along a straight line is four times the length of the inradius plus four times the length
of the circumradius of the n-gon.

If nis even...

If nisodd...

—PuiLip MALLINSON
Puiirips EXETER ACADEMY
Exerer, NH 03833-2460
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The Incredibly Knotty
Checkerboard Challenge

LOUIS ZULLI
Union College
Schenectady, NY 12308-3166

Introduction This note is about an easily-stated puzzle that arose in an interesting
way. The puzzle involves certain patterns of coins on an ordinary checkerboard, but it
was suggested by a theorem in diagrammatic knot theory! We begin by presenting the
checkerboard puzzle. After we analyze the puzzle mathematically, we discuss the
somewhat surprising connection between patterns of coins on a checkerboard and
knots, which are simple, closed curves in space.

A standard checkerboard consists of sixty-four squares, arranged in eight rows and
eight columns. If we focus on the corners of squares, then a checkerboard provides
eighty-one vertices, arranged in a 9 X 9 grid.

By placing coins at some of these vertices, form any pattern that satisfies these
conditions:

1. No coin lies at a vertex on the main diagonal of the board. (The main diagonal runs
from upper-left to lower-right.)
2. The pattern is symmetric with respect to reflection across the main diagonal.

There are thus 2% admissible patterns; see Ficure 1 for an example.

Here is the challenge: By completely covering eight or fewer columns of vertices on
the checkerboard, leave an even number—zero is allowed—of coins visible in each
row.

For example, if we cover columns 2 and 8 in Ficure 1, we obtain the pattern shown
in Ficure 2. Because an odd number of coins remain visible in each of four rows, this
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FIGURE 1
An admissible pattern.
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FIGURE 2
Covering columns.

is not a solution to the challenge. To solve the puzzle, we must cover columns to leave
an even number of coins visible in each row.

In fact, there is a unique solution to the challenge for the pattern shown in
Ficure 1. We urge the reader to seek this solution! As a few minutes spent searching
will confirm, finding the solution to this puzzle by “trial and error” is difficult, so
there is something to be gained by confronting the challenge systematically. The
primary aim of this note is to provide a systematic method for tackling these
checkerboard puzzles.

Although we have begun by presenting a specific example, we shall show that not
only does a solution exist for the pattern depicted in Ficure 1, but that a solution exists
for each admissible pattern of coins. Specifically, we shall prove:

THEOREM (Existence of Solutions). Let n be an odd number. On an n X n grid,
consider any pattern of coins that satisfies conditions (1) and (2) above. Then it is
possible to cover j columns, where 0 <j <n —1, to leave an even number of coins
visible in each row.

Notice we are not claiming each admissible pattern admits just one solution.
Indeed, it is not difficult to find patterns of coins that admit multiple solutions. Also,
according to the theorem, we don’t need to confine ourselves to a standard checker-
board when we present this challenge. All we require is a square grid composed of an
odd number of vertices.

In addition to proving the existence theorem stated above, we shall provide an
algorithm for finding the solution or solutions whose existence the theorem guaran-
tees. Actually, once the puzzle has been reformulated properly, it probably will be
obvious to all which algorithm solves it. So a main goal of this note is to reformulate
the checkerboard challenge to make it more amenable to mathematical investigation.
Once this has been done, it will be rather easy to prove the existence theorem stated
above, and to solve any given puzzle using a simple and well-understood algorithm.

Reformulating the challenge As perhaps the reader has discovered, when columns
2, 6, and 7 are covered in Ficure 1, an even number of coins remain visible in each
row. Let us use this solution to reformulate the challenge and make the puzzle much
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easier to analyze. The first step is an obvious one—use a 9 X 9 matrix to represent the
pattern of coins on the checkerboard. With 1 representing a coin and 0 denoting an
empty vertex, the pattern in Ficure 1 corresponds to the matrix

[0 1 0 1 0 1 1 0 1]
1 01 01 10 1 0
01 01 01 01 0
1 01 01 0 1 1 0
A={0 1 0 1 0 1 0 0 1
1 11 01 0 0 1 0
1 001 0 0 0 1 1
01 1 1 01 1 0 0
1. 0 001 0 1 0 0]

With A; denoting the jth column vector of A, we see that the solution given above
is a solution precisely because

A+ A+ A +A +Ag+ Ay =

DO DO ™ DO DO DO

or, equivalently, because

b

—_ O O === O -
Il

DO DO N R DO DO DO

L1] L2

Of course, all that matters here is that the vector on the right-hand side of the
equation contains even numbers only. Because of this, it is natural to abandon the real
number system, and use instead the field Z/27Z. This field has only two elements,
0 and 1, which correspond to even and odd. In Z/27, the matrix equation above
becomes

b
=0 OO
Il
[=NeNoBoNoleloNe N




VOL. 71, NO. 5, DECEMBER 1998 381

Now it should be clear that the checkerboard challenge corresponds to a standard
problem in linear algebra! Indeed, finding the set of solutions for a given admissible
pattern is equivalent to finding the nullspace of the matrix that represents the pattern,
The only twist is that we must view the matrix as a matrix over Z/27Z, and we must
view the solution vectors as elements of (Z/27)° rather than R®. In theory, this
change of fields matters little—we can find the solutions that correspond to a given
pattern of coins by converting the matrix to row-echelon form and solving the
associated homogeneous system of linear equations. In practice, using the two-
element field makes computation quite easy, since row reduction of matrices over
Z /27 is especially simple.

To illustrate, consider the matrix A that corresponds to the pattern of coins from
Ficure 1. Row reduction of that matrix over Z /27 yields the matrix

10101 10 1 0
01 010110 1
001 11100 1
000100 10 1

B={0 0 0 0 1 1 1 0 1
000001100
0000001 11
000 00O0O0 1 1
0 0000 00 0 0

Since only the ninth column lacks a pivot, the nullspace of B is one-dimensional. So
besides the zero vector, which doesn’t correspond to a valid solution to the puzzle,
there is a single vector X in the nullspace of B. By solving the associated homoge-
neous system of linear equations, we find the components of X are x, =x5=x,=0
and x; =x;=x,=x5=23=1x9=1. So we have recovered algebraically what we
already knew—to solve the puzzle for the pattern of coins in Ficure 1, we must cover
columns 2, 6, and 7. Also, we have justified our assertion that this is the only solution
to the puzzle for that pattern of coins.

Existence of solutions In this section, we prove the existence theorem stated in the
Introduction. Actually, we prove the following reformulation of that theorem:

THEOREM (Existence of Solutions). Let n be an odd number. Over the field Z /27,
consider any n X n matrix that has the following properties:

1. Each element on the main diagonal of the matrix is 0.
2. The matrix is symmetric.

Then there exists a non-zero vector in the nullspace of the matrix.

(A note on terminology: Henceforth, we will call an n X n matrix over Z/2Z that
satisfies 1) and 2) an alternating matrix, regardless of the parity of n. This usage is
standard, and is appropriate since each such matrix represents an alternating bilinear
form on (Z/27Z)". We will call an odd-dimensional alternating matrix a checkerboard
matrix. With this terminology, our theorem becomes “a checkerboard matrix has a
non-trivial nullspace.”)

Before we prove the theorem, two comments: First, n must be an odd number.
Otherwise we can easily find alternating matrices that have trivial nullspaces. Indeed,
for each even number n, the matrix that has ones immediately above and below the
main diagonal and zeros elsewhere is such a matrix. Second, the theorem says nothing
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about uniqueness of solutions. In general, solutions are not unique, but they do form a
subspace of (Z/27)".

Now let us prove the theorem. With our reformulation, the proof is rather easy.

Proof. Let A be an n X n checkerboard matrix. It suffices to show that det(A) =0
in Z/27. Recall that det( A) is a certain alternating sum of products of elements of A
(or see p. 514 in [3]). In Z/2Z, —1= +1, so this alternating sum becomes an
ordinary sum. Call a configuration of n locations in A a transversal if each row and
each column of A is represented just once by the locations that comprise the
configuration. There are thus n! transversals, and each gives rise to a summand in
det(A). Specifically, each transversal contributes to det(A) the product of the
elements that occupy the locations that comprise the transversal. We must demon-
strate that the sum of these n! contributions is zero in Z /2Z.

To see this sum is zero, note that any transversal that contains at least one location
on the main diagonal contributes nothing, since each element on the diagonal of A is
zero. Those transversals that do not intersect the main diagonal occur in pairs—each
such transversal has a “mirror image” obtained by reflection across the main diagonal.
(Because n is odd, no such transversal is its own mirror image.) Since A is symmetric,
each such transversal and its mirror image make the same contribution; since we are
working in Z /27, the combined contribution of the paired transversals is zero. Thus

det( A) = 0.

A connection to knot theory In this section, we describe the path we followed
from knot theory to the checkerboard challenge. The account here is self-contained,
but for more about knot theory, see [1], [2], or [4].

As above, we use an example to focus our discussion. A diagram for the knot 9,4 is
shown in Ficure 3. This is a positive knot diagram, which means each crossing in the
diagram is a positive crossing according to the conventions of knot theory. (See p. 152
of [1] for a discussion of crossing signs.) We have assigned a number to each crossing;
this has been done in an arbitrary manner, and simply for reference.

To this labeled knot diagram, we assign a 9 X 9 matrix A over Z/2Z, as follows:
Let a; =0 for i=1,2,...,9 and, for i #3j, let a; be the number of times (mod 2)
that we traverse crossing i when we trace along the knot from overcrossing j to

FIGURE 3
The knot 94.
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undercrossing j. For example, to determine the first column of A, we start at the
overcrossing labeled 1 and trace along the knot diagram (in either direction) until we
reach the undercrossing labeled 1. During this trip, we traverse crossings 3, 5, 6, and 9
once, and we traverse crossings 2, 4, 7, and 8 either twice or not at all. Thus
ag) =ay =a; =ag =0 and a3 = a5 = ag = ag = 1. By following the same proce-
dure for each of the remaining eight columns, we obtain the matrix

1

SO O MHFEHOO
—_ o = = O
OO OO MO
= = O
—HOoO OO, O —~OH
SO OO HOHOO
S OO MO MO M

S OO0 HMHMHMHO

S
Il
—
H OO, M OHFHOO

This matrix is called the trip matrix of the knot diagram, and it contains much
information about the knot that the diagram represents. In particular, we can obtain
the Jones polynomial of the knot directly from the matrix. (The Jones polynomial is a
knot invariant that often can distinguish one knot from another.) For more about trip
matrices, see [5]. Notice our trip matrix is an alternating matrix—in particular, it is
symmetric. However, as we shall see, not every alternating matrix is the trip matrix of
a positive knot diagram.

In [6], it is proved that the rank over Z /27 of the trip matrix of a positive knot
diagram is an even number. Specifically, the rank is shown to be twice the genus of
the simplest orientable surface that spans the knot. (See Section 4.3 of [1] for more
about spanning surfaces of knots.) Thus, for the trip matrix of a positive knot diagram
with an odd number of crossings, the nullspace must be non-trivial. This is an
immediate consequence of “rank plus nullity equals size of matrix.” So, for patterns of
coins that correspond to such knots, we knew a priori that solutions had to exist. The
next question was natural: What about checkerboard matrices that don’t correspond
to knots—must they also have non-trivial nullspaces? With that question, this note
was born.

As we know now, the answer to that question is yes. In fact, the answer is also yes to
another natural question: Does each alternating matrix have even rank over Z /27? As
noted above, for trip matrices of positive knot diagrams this can be proved using
knot-theoretic arguments. To prove the result in general, we can view our matrix as
the matrix (with respect to the standard basis) of an alternating bilinear form on
(Z/22)", and invoke Theorem 8.1 on p. 586 of [3]. This theorem provides a canonical
decomposition of each alternating bilinear form, and an examination of this decompo-
sition immediately shows that the rank of each matrix that represents the form is even.
Of course, the affirmative answer to the second natural question implies an affirmative
answer to the first, giving another—albeit indirect—proof of our theorem.

In retrospect, what is amazing about the birth of the checkerboard challenge is
what we didn’t see. Our result from knot theory told us that the trip matrix of a
positive knot diagram with an odd number of crossings had a non-trivial nullspace, or
equivalently, that the corresponding checkerboard puzzle had a solution. But it wasn’t
until much later that we noticed the obvious: Meeting the checkerboard challenge for
a pattern of coins that corresponds to any positive knot diagram is easy. In fact, we
don’t have to cover columns at all, the pattern comes already solved! This is because,
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if we trace along a knot diagram from an overcrossing to the corresponding under-
crossing, we will traverse an even number of other crossings, counting multiplicities.
This is true no matter the number of crossings in the diagram, so for patterns
that correspond to positive knots, parity is not an issue at all. This also shows there
are an infinite number of alternating matrices that do not correspond to positive
knot diagrams.

There is something else that is interesting about patterns that correspond to positive
knot diagrams. Not only do such patterns come already solved, but we can use the
knot diagram to find any additional solutions that might exist. We do this as follows:
We begin by placing an orientation on the knot. Then we simply replace each crossing
in the diagram with a pair of small, uncrossed arcs that preserve the orientation. See
Ficure 4, which shows the result of this process for the knot from Ficure 3.

N

FIGURE 4
Seifert circles.

The topological circles that result are called the Seifert circles of the oriented knot
diagram, and they encode a collection of solutions to our puzzle. Each Seifert circle
approaches sites formerly occupied by crossings. Each of those sites retains a
numerical label, which identified the now-departed crossing. Thus, from each Seifert
circle, we can obtain a set of numbers. For example, from the Seifert circles shown in
Ficure 4, we obtain {1, 3, 5,6, 9}, {2,3,4,5,7}, {2,4,7,8} and {1, 6, 8,9}. Each of these
sets yields a solution to the puzzle for the pattern of coins that corresponds to the knot
9,6 For example, {1, 3,5, 6,9} indicates that we can obtain a solution by leaving those
five columns uncovered on the board. The other three sets yield additional solutions
in the same way, so here the Seifert circles are directly providing four solutions. Since
the sum of these solutions corresponds to the zero vector in (Z/22)°, the solutions
are not linearly independent over Z/2Z. However, any three of them are indepen-
dent and form a basis for the space of solutions. Thus, in total, there are seven
solutions to the puzzle for this knot diagram. These seven solutions correspond to the
non-trivial linear combinations over Z /27 of any three basic solutions.

In fact, what we have demonstrated for the knot 9,4 is true in general. To find a
basis for the set of solutions to the puzzle that corresponds to a positive knot diagram,
simply resolve the diagram into Seifert circles and discard any circle. The sets that
correspond to the circles that remain provide a basis for the set of solutions to the
puzzle. (This can be seen by examining the proof of Theorem 2 in [5].) So, at least for
certain special patterns of coins, we don’t even need linear algebra to meet the
incredible checkerboard challenge. We simply must draw the right picture!
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Two Diophantine Equations
Studied by Ramanujan

MICHAEL D. HIRSCHHORN
The University of New South Wales
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Australia

Introduction In his second notebook [3, p. 225], Ramanujan wrote

(60 + (30 —n))’ + (6n> — (3n® —n))’ = (6n2(3n® + 1))’ (1)
and
(m = 3m*(1 4+ p) +m(3(1+p)> = 1)) + (2m® — 3m3(1 +2p) + (1+3p +3p?))°
+(m® — (1+3p +3p?))’
= (m" = 3m'p +m(3p> - 1))’. (2)
These represent solutions of the diophantine equations
A’ +B®=C? (3)
and
A*+ B3+ (C3=D5 (4)

It appears ([2, pp. 578-9]) that equation (3) was first studied by Euler, and the
general solution found by R. Hoppe. According to ([2, pp. 550-554]), equation (4)
was studied by Vieta and Fermat, and the general solution found by Euler. Both
equations, especially (4), have aroused considerable interest over the centuries. But
Ramanujan knew none of this when he composed his notebooks [3].

It is, of course, easy to verify Ramanujan’s solutions. But the question arises: How
did Ramanujan obtain them? My object is to give a plausible answer.

The diophantine equation A® + B> =C? Suppose that A®+ B® = C?, and write
A=x+y and B=x—y. Then

A3+B3=(x+y)3+(x—y)3=2x3+6xy2=2x(x2+3y2).

Now write y =a —b and x* = 12ab, for then x*+ 3y®>=3(a +b)* and A®+ B® =
6x(a +b)*. Now let x =6m®. Then

A’ + B =36m?*(a +b)" = (6(a+b)ym)’ =C?,

with C = 6(a + b)m. Also, 12ab =x2% = (6m?)? = 36m*, so ab = 3m*. Thus we obtain
the following result.

THEOREM 1. If m is an integer and if ab = 3m*, then

(6m2 + (a—b))’ + (6m> — (a = b))’ = (6(a +b)m)",
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Indeed, a straightforward calculation yields the identity
(6m>+ (a— b)) + (6m?— (a —b))’ = (6(a +b)m)’ + 144m?(3m* — ab)
of which Theorem 1 is an immediate corollary.

6

If we set a = 3m*n, b =m?/n, multiply by n® and delete the factor m®, we obtain

Ramanujan’s result (1).
If, instead, we set a = 3m*/n® and b = n?, and multiply by n°, we obtain Euler’s
solution of (3):

(3m* + 6m?*n® — 1)’ + (=3m* + 6m?n? + n“)3 = (18m°n + 6mn®)°.
Yet again, if we set a = 3n and b =m*/n, and multiply by n°, we obtain
(3n3 + 6m2n® —mn)’ + (—3n® + 6mZn? + min)’ = (18mn* + 6m®n2)”.
If we now set n =m? — ¢, we obtain
(8m® — 20cm* + 15c2m? — 3¢®)” + (4m® — 4em* — 3c2m? + 3¢%)°
= (24m® — 84cm” + 114c2m® — 72¢%m® + 18¢*m)”.
Now put ¢ =2p and divide throughout by 4® = 8, to find
(m® —2pm* — 3p>m* + 6p3)34 + (2m® — 10pm* + 15p>m* — 6p°)°
= (3m® — 21 pm” + 5Tp>m® — 72 p°m® + 36p*m)’.
The diophantine equation A® + B®> + C3=D? Suppose that A® + B® + C% = D?,

and writte A=y —x, B=u+v, C=u—v, and D=y +x. Then u(u®+30%)=
x(x? + 3y?), or, equivalently,

If we set both sides equal to M, we find v =Mx and x24+3y2=M®w?+ 30 =
M(Mx)? + 3Mv? = M 3x* + 3Mv?, or, equivalently,

3(y? —Mv*)=(M3—1)x%
Now we let M =m?, to obtain 3(y + mv)(y —mv) = (m® — Dx2.
Up to this point I have been heavily indebted to Bruce Berndt [1, p. 198], but now

our paths diverge. We set x = 3m, to get (y + mv)(y — mv) = 3m*(m® — 1). Now we
write y +mv=am and y —mv = bm, where ab = 3(m°® — 1). Then

y=%(am+bm) and U=%((l—b),
with x = 3m and « = 3m3 Thus we have
A=%(d+b—6)m, B=%(6m3+(a—b))
C=2(6m*~(a—b)), D=n(a+bh+6)m,

and we obtain the following result:
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THEOREM 2. If m is an integer and if ab = 3(m® — 1), then
((a+b—6)m)°+ (6m®+ (a—b))’ + (6m® - (a—b))’ = ((a +b +6)m)".
Again, a straightforward calculation yields
((a+b—6)m)’ + (6m®+ (a—b))’+ (6m® — (a — b))’
= ((a+b+6)m)° + 144m3(3(m® — 1) — ab),
of which Theorem 2 is an immediate corollary.
If we write @ = 3n and b = (m® — 1) /n, and multiply through by n® we obtain
(3mn2 — 6mn +m” —m)’ + (3n% + 6m*n —m® + 1) + (—=3n% + 6mn +m° — 1)’
= (3mn® + 6mn +m’ —m)".
Next, we set n =m?> — ¢ and obtain
(4m" — (6¢ + 6)m* + (3¢ + 6¢ — 1)m)’
+(8m® — 120m® + (3¢® + 1))’ + (4m° — (3¢ + 1))’
= (4m" — (6¢ — 6)m* + (3c2 — 6c — 1)m)".
Finally, we put ¢ = 2p + 1 and divide throughout by 4, to find
(m"—(Bp+3)m*+ (3p*+6p+ 2)m)3
+(2m® = (6p +3)m® + (3p>+3p +1))’
+(m® = (3p*+3p + 1))3
= (m" = 3pm* + (3p* ~ m)",

which is Ramanujan’s result (2).

REFERENCES
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Proposals

To be considered for publication, solutions
should be received by May 1, 1999.

1559. Proposed by ]oaqui’n Goémez Rey, 1. B. “Luis Buiiuel,” Alcorcén, Madrid,
Spain.
For what complex numbers z is the sequence (a,(z)), . , defined by
= +k\) &
o= T ("5F)?
oo\ 2k

periodic?
1560. Proposed by Wu Wei Chao, Guang Zhou Normal University, Guang Zhou
City, Guang Dong Province, China.

Points A, B, C, P, Q, and T lie on a circle and satisfy AB > AC, T is on the same
side of BC as A with TB=TC, and AP =AQ = VAB-AC. Let [ ABC] denote the
area of A ABC, and so forth.

(a) If £ BAC > 90°, prove that [ ABC]> [ APQ].

(b) If YAB-AC < BC, prove that [TBC] > [ APQ].

1561. Proposed by Emre Alkan, student, University of Wisconsin, Madison, Wiscon-
sin.

Let a,,..., a; be pairwise relatively prime, positive integers. Determine the largest
integer not expressible in the form

X095 " A +Xgd1ag Q) T XA 09t Af_q,

for some nonnegative integers x, ..., xy.

We invite readers to submit problems believed to be new and appealing to students and teachers of
advanced undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any
bibliographical information that will assist the editors and referees. A problem submitted as a Quickie
should have an unexpected, succinct solution.

Solutions should be written in a style appropriate for this MAGAZINE. Each solution should begin on a
separate sheet containing the solver’s name and full address.

Solutions and new proposals should be mailed to George T. Gilbert, Problems Editor, Department of
Mathematics, Box 298900, Texas Christian University, Fort Worth, TX 76129, or mailed electronically
(ideally as a LATEX file) to g.gilbert@tcu.edu. Readers who use e-mail should also provide an
e-mail address.

389
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1562. Proposed by John Wickner, student, St. Thomas College, St. Paul, Minnesota,
and Scott Beslin and Valerio De Angelis, Nicholls State University, Thibodaux,
Louisiana.

Prove that

1, 6 107
tan(ztan 4)2(005 17 + cos—=— 7 )

1563. Proposed by Wu Wei Chao, Guang Zhou Normal University, Guang Zhou
City, Guang Dong Province, China.

For a given field F, classify all possible partitions of F into finitely many
equivalence classes such that each class is closed under addition and multiplication by
distinct elements in the class.

Quickies

Answers to the Quickies are on pages 396.

Q885. Proposed by Keivan Mallahi, student, Sharif University of Technology,
Tehran, Iran.

Let S be a finite set of n Xn matrices over a field. If S is closed under
multiplication, prove that there exists M € S such that Trace (M) €{0,1,2,...,n}.

Q886. Proposed by Zheng-Ping Tian, Hangzhou Teacher’s College, Hangzhou,
Zhejiang, China.

If a, b, and ¢ are real numbers that satisfy ¢ >b >¢ >0 and a +b + ¢ = 3, show
that ab® + bc® + ca® < 27/8.

Solutions

Sum of a Sequence of Floors and Ceilings December 1997
1534. Proposed by Donald Knuth, Stanford University, Stanford, California.

Let m, n, and p be positive integers, and set

b () = PQ/ g (1) =t ,(0) 1 (1) = 1, (- 1),

Prove that s,, ,(n) is a multiple of ¢,, ,(n).

Solution by Matthias Beck and Akalu Tefera, Temple University, Philadelphia, Penn-
sylvania, and Melkamu Zeleke, The William Paterson University of New Jersey,
Wayne, New [ersey.

We prove a slightly more general result: Let m,n, p €N and define T,, (n) =
[ln/ml/pl and S, (n)=XiZ4T, ,(j). Then S, P(n) is a multiple of T, p(n) if
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and only if n <m or at least one of the integers m, p,q is even, where ¢:=
[(n —m)/(pm)].

To begin the proof, observe that if n <m, then S
multiple of T,, (n)..Therefore, assume n >m. Then

[n/m] =[[n/mj+p—l} =[[n/m—1j
p p p

m, p(n) = 0, WhiCh is clearly a

+1

Tm,p(n) = [

n—m
=[ J+l=q+l>Q
pm

where we used the fact that, for b €N, ||la]/b] =|a/b]. Furthermore,

S, p(n) = JZ T, ,(j) = b ([J—T—"J T 1).

j=o \L P

Now divide [m,n — 1] into subintervals of pm integers (plus the remaining final
subinterval, which could be empty), each representing a constant contribution to
S (n). Thus, we have

m,p
m—1 g—1 pm(k+1)+m~-1 n—1
Sup(n)= 2 0+ 1 Y (k+tD+ X (g+1)
j=0 k=0  j=pmk+m j=pmq+m
q-

1
= pm(k +1) + (n—pmg —m)(qg +1)
k=0

_ pmg(g+1) _ pmg

= 5 +(n—pmg—m)(q+1)=|n—m— =T, (n).
It follows that T, ,(n) divides S,, ,(n) if and only if n —m —pmq/2 is an integer,
which in turn holds if and only if pmg is even.

Also solved by ]. C. Binz (Switzerland), Mark Bowron, David Callan, John Christopher, Con Amore
Problem Group (Denmark), Daniele Donini (Italy), Marty Getz and Dixon Jones, Thomas Jager, Sean
Mcllroy (Canada), Ioana Mihaila, Kenneth Rogers, Heinz-Jiirgen Seiffert (Germany), Nicholas C. Singer,
The TAMUK Problem Solvers, Western Maryland College Problems Group, and the proposer. There were
three incorrect solutions.

A Class of Real-Valued Functions on Groups December 1997

1535. Proposed by Sergei Ouchinnikov, San Francisco State University, San Fran-
cisco, California.

Let S be a nonempty set of real numbers. Prove that there exists a group G and a
surjective function f: G — § satisfying

flxy™") = min{f(x),f(y)} forallx,yeG

if and only if supS € S.
Solution by Yan-loi Wong, The National University of Singapore, Singapore, Republic
of Singapore.

Suppose that such a group G and a surjection f:G — S exist. Let s €S. As f is
surjective, there exists x € G such that f(x)=s. Denote the identity element of G
by e. Then, f(e) =f(xx™') = min{f(x), f(x)} = f(x) =s. Hence, sup S =f(e) € S.
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Conversely, suppose sup S € S. Let G be the free abelian group generated by S.
Then x €G can be represented as X . ¢n,s, where only finitely many of the
integers n, are nonzero. Define a function f:G — S as follows. For the identity
element 0 of G, define f(0):=supS. For x#0, define f(x):=min{s|n =+ 0}.
Clearly, f is surjective. It is straightforward to check that f(x —y) > min{f(x), f(y)}
for all x,y €G.

Also solved by Matt Baker (graduate student), Daniele Donini (Italy), Marty Getz and Dixon Jones,
Thomas Jager, Michael Josephy (Costa Rica), John Koker, . H. Pathak, W. R. Smythe, and the proposer.

Determinants of Catalan Numbers December 1997
1536. Proposed by Emeric Deutsch, Polytechnic University, Brooklyn, New York.

Let ¢, = (Qn") /(n + 1) be the Catalan numbers. Evaluate the determinants

1 €1 Cp .. Cpg Gy

-1 1 ¢ ... c¢,.5 Ch_o

0 -1 1 ... c,_q4 cC,_

A,, — . n—4 n—3 and

0 0 0 1 ¢

0 0 0 -1 1
2 €, Cy ... Ch_g Cp_y
-1 2 ¢ ... c,_3 C,_q

B, = 0 -1 2 Cpy Ch_g

0 o o .. 2 ¢
0 o o . -1 2

I. Solution by Frank A. Horrigan, Raytheon Systems Company, Tewksbury, Mas-
sachusetts.

We show that A, =¢, and B, =c¢, ;.

Define Ay,=1, By:=1, and the generating functions A(x):=X,_j A, x",
B(x)=X"_,B,x", and C(x):=X7_yc,x". First let us evaluate the generating
function C(x). A recursive relationship can be written from the definition of ¢,
namely (n + 2)c, ., = (4n + 2)c,. Multiplying both sides of this recursion by x" and
summing from 0 to %, we find

Yo(n+1)c,qx"+ Y cpx” =4 ne,x"+2 ) c,x",
n=0

n=0 n=0 n=0

00+ S mao(n 2000,

With initial condition C(0) = ¢, = 1, this differential equation has solution

C(x) = 1-vl-dx ”211_4’“ c(0)=1,
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which satisfies
x[C(x)]*-C(x) +1=0. (1)

We now evaluate the determinants A, ., and B, through repeated expansion by
minors using the left-most column at each stage, obtaining

C1 G Cpn—1 Cn

-1 1 Cn—3 Cn-s
A, =A,+

0 0 1 ¢

0 0 -1 1

and
¢ €y ecn—1 ¢,
-1 2 Ch_3 Cp_s
B,,,=2B, + -
0o o0 .. 2 ¢
o 0 .. -1 2

©»=B,+¢yB,+¢;B,_; + " +c,_, B, +¢,B,.

Multiplying both sides of each equation by x" ! and summing from 0 to «, we find
that A(x) — 1 =xA(x)C(x) and B(x) — 1 =xB(x) 4+ xB(x)C(x). Solving for A(x)
and B(x) and using equation (1) yields

A(x)=F'xlCTx)=C(x) and B(x)= l—x—GC(x) =C(x£—1

Therefore, A, =c¢, and B, =c, 1.
II. Solution by Lou Shapiro, Howard University, Washington, D. C.
Equation (1) of Solution I above implies the standard identity

Cp=CoCph_1 T €169 TCyC, 3+ Fc,_ 0. (2)
We may rewrite this identity for n, n —1,...,1, 0 in matrix form as
1 Cl 02 Cn—2 Cn—l Cn—l Cy
-1 1 ¢ ... ¢C,_5 Co_a|lCn-s 0
0 _1 1 Cn—4 Cn—3 Cn—3 O
0 o o0 .. 1 ¢ ¢ 0
0 0 0o ... -1 1 o 0
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Applying Cramer’s rule to solve for the final variable yields

1 € Cy ... Ch_g C,
-1 1 ¢ ... ¢_3 0
0 -1 1 ... ¢4 O
0 0 0 1 0
o 0 0 0 -1 0] ¢
A= 1 . Cy Cog  Cph_q A,
-1 1 ¢ Ch_3 Cp_o
0 -1 1 Cho_g Cn_s
0 0 0 1 ¢
0 0 O -1 1

Because the determinant in the numerator, ¢,, is non-zero, A, is non-zero as well.
This justifies the use of Cramer’s rule and allows us to conclude that A, =c¢,.
Similarly, a slight manipulation of the identity (2) yields

2 ¢ Cg Ch—g  Cy-1 Cn Crnt1
-1 2 €1 ... Cp_g Cu_g||Cn-1 0
0 -1 2 Co—s  Cpn—s | |Cnes 0
0 0 0o ... 2 ¢ Cy 0
0 0 o ... -1 2 ¢ 0

Cramer’s rule now implies 1 =¢, =¢, ., /B,, or B, =c¢, ;.

Also solved by Anchorage Math Solutions Group, J. C. Binz (Switzerland), Stan Byrd and Ronald L.
Smith, David Callan, C. Coker, Con Amore Problem Group (Denmark), Daniele Donini (Italy), Seyoum
Getu, Marty Getz and Dixon Jones, Thomas Jager, Harris Kwong, Carl Libis, Allan Pedersen (Denmark),
Heinz-Jiirgen Seiffert (Germany), William F. Trench, Western Maryland College Problems Group, Michael
Woltermann, and the proposer. There was one incomplete solution.

A Nim-Type Game December 1997
1537. Proposed by Jerrold W. Grossman, Oakland University, Rochester, Michigan.

A two-person game is played as follows. A position consists of a pair (a,b) of
positive integers. Players alternate moves, a move consisting of decreasing the larger
number in the current position by any positive multiple of the smaller number, as long
as the result remains positive. The first player unable to make a move loses. (This
happens when a = b.) Determine those @ and b such that the player who goes first
from position (a, b) can guarantee a win with optimal play.

Solution by Philip D. Straffin, Beloit College, Beloit, Wisconsin.

The player who goes first can guarantee a win if and only if the ratio of the larger
number to the smaller is greater than the “golden ratio” ¢=(1 + V5)/2. To show
this, we partition the set of unordered pairs of (not necessarily distinct) positive
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integers into the set % of pairs for which this condition is true, and the set & of pairs
for which it is false. We must show that
(i) for any pair in 7, there is at least one move which leaves a pair in ., and
(i) for any pair in ., all legal moves leave a pair in 7.

To prove (i), consider {a, b} with a/b > ¢. It suffices to show that there is a
positive integer k such that

1  a—-bk
$<T<¢.

Since ¢ satisfies the identity 1/¢ = ¢ — 1, this is equivalent to
a

$p-1<7—k<o.

Because ¢ is irrational, there is exactly one such integer k, which is positive since
a/b > ¢. We have shown that for any position in 7, there is exactly one move leaving
a pair in .Z.

To prove (i), consider {a, b} with 1 <a/b < ¢. If a = b, there is no legal move and
the player to move has lost. If @ > b, the only legal move is to {¢ — b, b}, and then

b 1 1

b~ T_; -1 %
b

Also solved by Christian Blatter (Switzerland), David M. Bloom, Jean Bogaert (Belgium), David
Callan, John Christopher, Con Amore Problem Group (Denmark), Daniele Donini (Italy), William
Gasarch, Marty Getz and Dixon Jones, Robert Gibson, Peter Griffin, Thomas Jager, Kevin McDougal,
Sean Mcllroy (Canada), William A. Newcomb, Oklahoma State University Problem Solving Group, Allen J.
Schwenk, Jorge-Nuno Silva (Portugal), W. R. Smythe, James A. Swenson (student), Michael Woltermann,
and the proposer. There was one incorrect solution.

A 5th Degree, Symmetric Diophantine Equation December 1997

1538. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada, and George T. Gilbert, Texas Christian University, Fort Worth, Texas.

Find all integer solutions to 2(x° + 5 + 1) = 5xy(x® + y2 + 1).
L. Solution by Brian D. Beasley, Presbyterian College, Clinton, South Carolina.

We show that the given equation holds for integers x and y if and only if
x+y+1=0.

The given equation is true if and only if

2(x°+y®+1) = Bay(x®>+y>+ 1) =(x+y +1)f(x,y) =0,
where
f(x,y) =2x* —2x%y + 2x%y? — 24y + 2¢y* — 23 —xvzy —xy®
-2y +2x% —ay +2¢y2 —2x — 2y + 2.

Thus we need only show that f(x, y) # 0 for all integers x and y. Observe that in any

solution of the original equation, x and y must have opposite parity. By symmetry, we
may assume without loss of generality that «x is even and y is odd. Then

f(x,y)=2y*—xy?—2y* —xy + 2y? — 2y + 2 (mod 4).

However, each of the expressions 2y* — 2¢° = 2¢(y — 1), —xy® —xy = —xy(y + 1),
and 2¢y®—2y=2y(y—1) is divisible by 4 for x even, leaving f(x,y)=
2 (mod 4).
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II. Solution by Lenny Jones and students Karen Blount, Dennis Reigle, and Beth
Stockslager, Shippensburg University, Shippensburg, Pennsylvania.

The only solutions are ordered pairs of integers (x, y) with x +y +1=0.
To see this, factor 2(x° +y% + 1) = 5xy(x® +y> + 1) as (x + y + Df(x, y), where
fley) = [26%(x =y = D] + [x(2° —y +2)(x —y = 1]
+[2yt —24%] + [2¢42 —24] +2.
If y =x, then f(x, y) =2x* — 6x® + 3x* — 4x + 2, which has no integer roots by the
rational root theorem. Note that x and y cannot both be negative. By symmetry, it

suffices to show that f(x, y) # 0 for x >y + 1 with x > 0. In this case, observe that
each of the bracketed terms in f(x, y) is nonnegative, so that f(x, y) > 0.

Also solved by Reza Akhlaghi, Roy Barbara (Lebanon), Matt Baker (graduate student), J. C. Binz
(Switzerland), Stan Byrd and Terry J. Walters, John Christopher, Con Amore Problem Group (Denmark),
Daniele Donini (Italy), David Doster, Arthur H. Foss, Jiro Fukuta (Japan), Marty Getz and Dixon Jones,
Thomas Jager, Kee-Wai Lau (China), Atar Sen Mittal, Kandasamy Muthuvel, Oklahoma State University
Problem Solving Group, Allan Pedersen (Denmark), Gao Peng (graduate student), John P. Robertson and
James S. Robertson, Kenneth Rogers, Nicholas C. Singer, The TAMUK Problem Solvers, Charles H.
Webster, Western Maryland College Problems Group, Michael Woltermann, and the proposers. There were
eight incorrect solutions and three incomplete solutions.

Answers

Solutions to the Quickies on page 390.

A885. Given A €S, there exist positive integers j and k, with 2j <k such that
A= A" Let M =A"". Then

M2 =A2(k—j) =Ak—2jA7< =Ak—2jAj =Ak—j =M.
The eigenvalues of M are thus 0 and 1, and Trace (M) is the multiplicity of 1 in the
characteristic polynomial of M.

A886. Let f(a,b,c):=ab*+bc® + ca®. Then

f(a,b,c) +f(a,c,b)=(a+b+c)(ab+bc+ca) —3abc =3(ab + bc + ca — abe)
=3[(1-a)(1=b)(1—c)+(a+b+c)—1]=3[(1—a)(1 -b)(1—c) +2].

Because c <1 <a, we have (1 —a)(1 —b)1 —¢c)<0if b <1.If 1 <b, then

(1-a)(1-b)(1—c) <("+b —1)2(1—c)s(§ —1)2(1—0) _1

Therefore, f(a, b, )+ f(a,c, b) < 27/4. Noting that

fla,e,b) —f(a,b,c)=(a—Db)(b—c)(a—c)=0,
we have f(a,b,c) <27/8.

Correction
Q880, June 1998. The first exponent in the sum was incorrect. The problem should

._k)n
have read: Show that E( l)k( ) =nl
k=0

Acknowledgments. The editors would like to thank Murray S. Klamkin, Loren C.
Larson, Harvey Schmidt, and Daniel H. Ullman for their help in reviewing problem
proposals over the last year.
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REVIEWS

PAUL J. CAMPBELL, Editor
Beloit College

Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles and books are selected for
this section to call attention to interesting mathematical exposition that occurs outside the
mainstream of mathematics literature. Readers are invited to suggest items for review to
the editors.

Singh, Simon, Mathematics “proves” what the grocer always knew oranges [sic|, New York
Times (25 August 1998) F3. Devlin, Keith, Kepler's sphere packing problem solved,
http://www.maa.org/devlin/devlin_9_98.html . Peterson, I., Cracking Kepler’s sphere-
packing problem, Science News 154 (15 August 1998) 103. Mackenzie, Dana, The proof is
in the packing, American Scientist (November-December 1998) http://www.amsci.org/
amsci/issues/Sciobs98/sciobs98-11packing.html . Hales, Thomas, The Kepler Conjec-
ture, http:/www.math.lsa.umich.edu/"hales/countdown/ .

Kepler conjectured in 1611 that the densest way to pack spheres in infinite space is the
face-centered cubic packing, used by grocers to stack oranges. Thomas Hales (University
of Michigan) has announced a proof of the conjecture, which involves substantial computer
support and verification. The method involves classifying the possible kinds of star-shaped
gaps between spheres, decomposing them into a hybrid of Voronoi cells and Delaunay
triangulations, and solving an enormous optimization problem for each kind. The prose
part of the proof (250 pp) is at Hales’s Web site, as is the 3 GB of programs and data. It
will take some time before experts pronounce an opinion on the correctness of the proof!

Morris, S. Brent, Magic Tricks, Card Shuffling and Dynamic Computer Memories, MAA,
1998; xv + 148 pp,$28.95 (P). ISBN 0-88385-527-3.

This is a fun book that neatly encapsulates the mathematics behind card shufling and
wraps it beautifully in the milieu of magic. Each chapter begins with the description of
a card trick, followed by the development of the mathematics involved, and ends with
explaining in terms of the mathematics how the trick works. One chapter shows how card
shuffling can be applied to data retrieval and to data interchange in a parallel computer.
The level of mathematics involved climbs in the course of the book, from modular arithmetic
to permutation groups; but the book can be enjoyed by anyone.

Maor, Eli, Trigonometric Delights, Princeton University Press, 1998; xiv + 236 pp, $24.95.
ISBN 0-691-05754-0.

Can your students explain why it is advantageous to measure angles in radians? And do
you know how recently the term was coined? (1871). True to its title, this book presents
delights, both practical and esthetic, that would liven up any student’s experience of study-
ing trigonometry. Although the book is not a comprehensive history of trigonometry, it
presents numerous topics in trigonometry from a historical perspective, from the Babylo-
nian tablet Plimpton 322 through measuring the earth to Fourier series. Calculus occurs in
just a few places (e.g., in considering (sin 6)/6, which arises in calculating the circumference
of a circle at latitude 7/2—6). [One error marred my enjoyment: The name of A.B. Chace,
who investigated the Rhind Papyrus, appears consistently as “Chase.”]
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Henze, Norbert, and Hans Riedwyl, How to Win More: Strategies for Increasing a Lottery
Win, A K Peters, 1998; x + 149 pp, $15.95 (P). ISBN 0-56881-078-4.

“The main purpose of How to Win More is to give you valuable insights into how to improve
your long-term return on investment when playing lotto ... [Flormulae for computing odds
or expectations have been ‘banned’ into a separate unit (Chapter 8).” The insights boil down
to the advice to avoid popular combinations so that you won’t be as likely to have to share
the prize if you win. The authors define the arithmetic complezity of a combination for an
r/s lottery as the number of positive differences between the numbers, minus (r — 1) (e.g.,
the arithmetic complexity of an arithmetic progression is 0). Simple rules for generating
combinations, which are likely to be used by many people, generally produce combinations
of low arithmetic complexity. The Mathematical Appendix is valuable in collecting together
in one place a number of formulas (on waiting times, sums of numbers, etc.). The topic of
“intelligent play” is treated also in “Lotto play: The good, the fair, and the truly awful,”
by Dan Kadell and Donald Ylvisaker, Chance 4 (1991) (3) 22-25, 57. The book, however,
avoids giving advice on when to buy a lottery ticket; for that, see “When to buy a lottery
ticket,” by Sam C. Saunders, Mathematics Notes from Washington State University 30
(May 1987) (1-2) (Whole Numbers 117, 118) (but beware inverted exponent in equation

(13)).

Dudley, Underwood, Numerology, or, What Pythagoras Wrought, MAA, 1997; viii + 316
pp, $29.95. ISBN 0-88385-524-0.

This is a highly entertaining book by a former Associate Editor of this MAGAZINE, whose
writing pulls no punches. “Mysticism is a nonrational method of getting at truth ... There
is nothing wrong with mysticism. On the other hand, everything is wrong with numerology.
Numerologists purport to apply number mysticism ... Numerologists assert that numbers
tell you where it would be best to live, who you should marry, even at what time you should
arrive for an appointment. Numbers do not do this. It is not their job. Numbers have
power, but not that kind of power.” The chapters of the book tour through the history
and current practice of numerology, from Pythagoras (“shame on him”), biblical sevens,
rithmomachy (a game), and pyramidology, to the Elliott Wave (explain the stock market
with Fibonacci numbers) and biorhythms (good and bad days based on 23, 28, and 33).
“[I]t is my hope that copies of [this book] will turn up on the New Age shelves of used book
stores, where they may fall into the hands of those expecting something different. The
shock may do them good.”

Dershowitz, Nachum and Edward M. Reingold, Calendrical Calculations, Cambridge Uni-
versity Press, 1997; xxi + 307 pp, $64.95, $22.95 (P). ISBN 0-521-56413-1, 0-521-56474-3.

This book gives precise descriptions of fourteen calendars of current and historical interest,
together with accurate algorithms and Lisp computer code. Calendars included are Gre-
gorian, ISO, Julian, Coptic, Ethiopic, Islamic, modern Persian, Baha’'f, Hebrew, Mayan,
French Revolutionary, Chinese, old Hindu, and modern Hindu.

Connelly, Robert, and Allen Back, Mathematics and tensegrity, American Scientist (March—
April 1998) 142-151.

R. Buckminster Fuller popularized tensegrity structures, in which rigid struts are inter-
connected with cables under tension. This paper describes how these structures can be
modeled mathematically and investigates conditions for stability. Group representations
come into play, but the authors deftly hold the technical details back in favor of insightful
prose exposition.
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‘Pria

“ Constance Reid

written an excellent and loving book, about ber sister Julia
Robinson, the mathematician. The autbor bas written that she

mathematician. What a great gift this book would be!

Robinson broke ground in displaying the deep connections
between number theory and logic. Her results bave led to a

timely. Her work and ber example are bowever timeless and I
can think of no better advice to give a young mathematician,
either in bow to do mathematics. or bow to bebave in mathe-
matics, than: “Be like Julia!”

Gmstanoelkid,anmbﬁcbedmrabow"wbemamans,bas

wants the book to be one for all age groups and she bas succeeded
admirably in making # so.. Julia wanted to be known as a mathe-
matician, not a woman mathematician and rigbtly so! However,
she was, and is, a wonderful role model for women aspiring to be

—Alice Schafer, Former President, AWM
This book is a small treasure, one which I want to share with all
my mathematical friends. The assembly of several articles and
additional photos and remarks provides the image of a mathe-
matician of extraordinary taste, tenacity and generosity.... Julia

very active area today, making the appearance of this book very

—Carol Wood, Deputy Director, MSRI

Phone in Your Order Now! T 1-800-331-1622

LTHE MATHEMATICAL ASSOCIATION OF AMERICA 297
[ .
Juha a life in mathematics

Julia is the story of the life of Julia Bowman Robinson, the gift-
ed and highly original mathematician who during her lifetime
was recognized in ways that no other woman mathematician
had been recognized up to that time. In 1976 she became the
first woman mathematician elected to the National Academy of
Sciences and in 1983 the first woman elected president of the

This unusual book, profusely illustrated with previously
unpublished personal and mathematical memorabilia, brings
together in one volume the prizewinning “Autobiography of
Julia Robinson” by her sister, the popular mathematical
biographer Constance Reid, and three very personal articles
about her work by outstanding mathematical colleagues.

All royalties from sales of this book will go to fund a Julia
Robinson Prize in Mathematics at the high school from

which she graduated.

Catalog Code: JULIA/JR
136 pp., Hardbound, 1996, ISBN 0-88385-520-8
List: $27.00 MAA Member: $20.00
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23

H. S. M. Coxeter’ classic book on non-Euclidean
geometry was first published in 1942, and enjoyed
eight reprintings before it went out of print in 1968.
The MAA is delighted to be the publisher of the
sixth edition of this wonderful book, updated with
a new section 15.9 on the author’s useful concept of
inversive distance.

Throughout most of this book, non-Euclidean
geometries in spaces of two or three dimensions are
treated as specializations of real projective geometry
in terms of a simple set of axioms concerning points,
lines, planes, incidence, order and continuity, with
no mention of the measurement of distances or angles.
This synthetic development is followed by the intro-
duction of homogeneous coordinates, beginning
with Von Staudt’ idea of regarding points as entities
that can be added or multiplied. Transformations
that preserve incidence are called collineations.
They lead in a natural way to elliptic isometries or
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Monday - Friday 8:30 am — 5:00 pm
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Non-Euclidean
Geometry

H. S. M. COXETER

“congruent transformations”. Following a recom-
mendation by Bertrand Russell, continuity is
described in terms of order. Elliptic and hyperbolic
geometries are derived from real projective geome-
try by specializing an elliptic or hyperbolic polarity
which transforms points into lines (in two dimen-
sions) or planes (in three dimensions) and vice versa.

An unusual feature of the book is its use of the
general linear transformation of coordinates to derive
the formulas of elliptic and hyperbolic trigonometry.
The area of a triangle is related to the sum of its
angles by means of an ingenious idea of Gauss. This
treatment can be enjoyed by anyone who is familiar
with algebra up to the elements of group theory.

Catalog Code: NEC/JR

320 pp., Paperbound, 1988
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Logic as Algebra

| Paul Halmos and Steven Givant

Series: Dolciani Mathematical Expositions

This book is based on the notes of a course in logic given by
Paul Halmos. This book retains the spirit and purpose of
those notes, which was to show that logic can (and perhaps
should) be viewed from an algebraic perspective. When so
viewed, many of its principal notions are seen to be old
friends, familiar algebraic notions that were “disguised” in logi-
cal clothing. Moreover, the connection between the principal
theorems of the subject and well-known theorems in algebra
becomes clearer. Even the proofs often gain in simplicity.

Propositional logic and monadic predicate calculus—predicate
logic with a single quantifier— are the principal topics treated.
The connections between logic and algebra are carefully
explained. The key notions and the fundamental theorems are
elucidated from both a logical and algebraic perspective. The
final section gives a unique and illuminating algebraic treatment
of the theory of syllogisms—perhaps the oldest branch of logic,
and a subject that is neglected in most modern logic texts.

The presentation is aimed at a broad audience—mathematics
amateurs, students, teachers, philosophers, linguists, computer
scientists, engineers, and professional mathematicians.
Whether the reader’s goal is a quick glimpse of modern logic or
a more serious study of the subject, the books fresh approach
will bring novel and illuminating insights to beginners and pro-
fessionals alike. All that is required of the reader is an acquain-
tance with some of the basic notions encountered in a first
course in modern algebra. In particular, no prior knowledge of
logic is assumed. The book could serve equally well as a fire-
side companion and as a course text.

Contents: What is Logic?: To count or to think; A small
alphabet; A small grammar; A small logic; What is truth?;
Motivation of the small language; All mathematics.
Propositional Calculus: Propositional symbols;
Propositional abbreviations; Polish notation; Language as
an algebra; Concatenation; Theorem schemata; Formal
proofs; Entailment; Logical equivalence; Conjunction;
Algebraic identities. Boolean Algebra: Equivalence class-
es; Interpretations; Consistency and Boolean algebra;
Duality and commutativity; Properties of Boolean alge-
bras; Subtraction; Examples of Boolean algebras.
Boolean Universal Algebra: Subalgebras;
Homomorphisms; Examples of homomorphisms; Free
algebras; Kernels and ideals; Maximal ideals;
Homomorphism theorem; Consequences; The represen-
tation theorem. Logic via Algebra: Pre-Boolean algebras;
Substitution rule; Boolean logics; Algebra of the proposi-
tional calculus; Algebra of proof and consequence.
Lattices and Infinite Operations: Lattices; Non-distribu-
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