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ARTICLES 

Galimatias Arithmeticae 
PAULO RIBENBOIM 

Queen's University 
Kingston, Ontario 
Canada K7L 3N6 

You may read in the Oxford English Dictionary that galimatias means confused 
language, meaningless talk. This is what you must expect in this talk.' As a token of 
admiration to Gauss, I dare to append the word Arithmeticae to my title. I mean no 
offense to the Prince, who, at age 24, published Disquisitiones Arithnwticae, the 
imperishable masterwork. 

As I retire (or am hit by retirement), it is time to look back at events in my career. 
Unlike what most people do, I would rather talk about mathematical properties and 
problems of some numbers connected with highlights of my life. I leave for the end 
the most striking conjunction. 

I'll begin with the hopeful number 11 and end with the ominous number 65. 

1 1 

* At age 11 I learned how to use x to represent an unknown quantity in order to solve 
problems like this one: "Three brothers, born two years apart, had sums of ages 
equal to 33. What are their ages?" The power of the method was immediately clear 
to me and determined that I would be interested in numbers, even after my age 
would surpass the double of the sum of the ages of the three brothers. 
But 11 is interesting for many better reasons. 

* 11 is the smallest prime repunit. A number with n digits all equal to 1 is called a 
repunit and denoted by R,. So 11 = R2. The following repunits are known to be 
prime: Rn with n = 2, 19, 23, 317, and 1031. It is not known whether there are 
infinitely many prime repunits. 

* If n > 11, there exists a prime p > 11 such that 
p divides n(n + 1)(n + 2)(n + 3). 

A curiosity? Not quite. A good theorem (by Mahler) states that if f(x) is a 
polynomial with integral coefficients of degree two or more (for two, the theorem is 
Polya's), and if H is a finite set of primes (such as {2, 3, 5, 7, 11}) then there exists n0 
such that if all prime factors of f(n) are in H, then n < nO. 

Another way of expressing this fact is as follows: lim n, P[f(n)] = co, where 
P[f(n)] denotes the largest prime factor of f(n). With the theory of Baker on linear 
forms in logarithms, Coates gave an effective bound for n,. For the particular 
polynomial f(x) = x(x + 1)(x + 2)(x + 3), the proof is elementary. 

1This paper is a modified version of a talk at the University of Munich, given in November 1994 at a 
festive colloquium in honor of Professor Sibylla Priess-Crampe. 

331 
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* 11 is the largest positive integer d that is square-free and such that Q(W- ) has a 
euclidean ring of integers. The other such fields are those with d = 1, 2, 3, and 7. 
This means that if a, ,B E -[d], there exist y, 8 E -[d] such that a = fly + 8 
where 8=0 or N(8)<N(,3). (Here, foro= a+b -d, N(a))=a2+db2. The 
situation is just like that for euclidean division in the ring Z of ordinary integers.) 

* It is not known whether there exists a cuboid with sides a, b, and c measured in 
integers, as well as all diagonals measured in integers. In other words, it is not 
known whether the following system has a solution in non-zero integers: 

a2+ b2 d2 

b2 + C2 =e2 

C2 + a 2 =f2 

a2+b2 +C2 =g2 

If such integers exist, then 11 divides abc. 
* 11 is the smallest integer that is not a numerus icloneus. 

You don't know what a numerus idoneus is? I too needed to reach 65 before 
realizing how this age and idoneus numbers are connected with each other. So be 
patient. 

* According to the theory of supersymmetry, the world has 11 dimensions: 3 for space 
position, 1 for time, and 7 to describe the various possible superstrings and their 
different vibrating patterns, so explaining subatomic particles' behavior. 
Is this a joke or a new theory to explain the world? 

* The Mersenne numbers are the integers Mq = 2q- 1, where q is a prime. Big deal: 
some are prime, some are composite. Bigger deal: how many of each kind? Total 
mystery! 

Mii = 211 - 1 = 2047 = 23 28. It is the smallest composite Mersenne number. The 
largest kilown composite Mersenne number is Mq, with 

q = 8069496435 X 105072 - 1. 

19 

* One of my favorite numbers has always been 19. At this age Napoleon was winning 
battles-this we should forget. At the same age, Gauss discovered the law of 
quadratic reciprocity-this you cannot forget, once you have known it. 

* First a curiosity concerning the number 19. It is the largest integer n such that 

n!-(n - l)!+(n-2)!- + 1! 

is a prime number. The other integers n with this property are 

n = 3,4,5,6,7,8,9,10, and 15. 

* Both the repunit Rl9 and the Mersenne number M19 are prime numbers. 
* Let U0 = 0, U1 = 1, and Un = Un-I + Un-2 for n ? 2; these are the Fibonacci 

numbers. If UL, is prime, then n must also be prime, but not conversely. 19 is the 
smallest prime index that provides a counterexample: Ul9 = 4181 = 37 113. 

* The fields Q( ), Q(19) have class number 1. (The class number is a natural 
number which one associates to every number field. It is 1 for the field of rationals; 
it is also 1 for the field of Gaussian numbers, and for any field whose arithmetical 
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properties resemble those of the rational numbers. The larger the class number of a 
number field, the more its arithmetical properties "deviate" from those of the 
rationals. For more on these concepts, see [3].) The ring of integers of Q( 19) is 
euclidean, while the ring of integers of Q(W- 19) is not euclidean. 

* Let n > 2, n # 2 (mod 4), and let t; = e2TTi/n denote a primitive n-th root of 1. 19 
is the largest prime p such that Q( P) has class number 1. This was important in 
connection with Kummer's research on Fermat's last theorem. 
Masley and Montgomery determined in 1976 all integers n, n X 2 (mod 4), such 
that Q( V) has class number 1, namely: 

n = 1,3,4,5,7,8,9,11,12,13,15,16,17,19,20,21,24,25,27,28, 
32,33,35,36,40,44,45,48,60, and 84. 

* Balasubramanian, Dress, and Deshouillers showed in 1986 that every natural 
number is the sum of at most 19 fourth powers. Davenport had shown in 1939 that 
every sufficiently large natural number is the sum of at most 16 fourth powers. This 
provided a complete solution of the two forms of Waring's problem for fourth 
powers. 

29 

* Twin primes, such as 29 and 31, are not like the ages of twins-their difference is 2. 
Why? There are many twin persons and many twin primes, but in both cases, it is 
not known whether there are infinitely many ... 
Euler showed that 

1 
-00* Ep=w 

p prime 

On the other hand, Brun showed that 

E 1< 00. 
p, p + 2 primes 

Brun's result says that either there are only finitely many twin primes, or, if there 
are infinitely many twin primes, their size must increase so rapidly that the sum 
above remains bounded. All of this is amply discussed in my book on prime 
numbers [5]. 

* A curiosity observed by Euler: If 29 divides the sum a4 + b4 + c4, then 29 divides 
gcd(a, b, c). 

* Let p be a prime. The primorial of p is 

Po= Hl q; 
q<p,q plime 

29 = 50 - 1. The expressions p# + 1 and p# - 1 have been considered in connec- 
tion with variants of Euclid's proof that there exist infinitely many primes. The 
following primes p are the only ones less than or equal to 11213 such that po - 1 
is prime: 

p = 3,5,11,13,41,89,317,991,1873,2053. 

For this and similar sequences, see [5]. 
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* 2.292 _ 1 = r- (a square); similarly 2K2 - 1 = I 2.52 _ 1 = LI. In fact, there are 
infinitely many natural numbers x such that 2 x2 - 1 = I l. Here is how to obtain all 
pairs of natural numbers (t, x) such that t2 - 2x2 = - 1. From (t + xix)(t - 2x) 
= - 1, it follows that t + x/2x is a unit in the field Q(x/2). The fundamental unit is 
1 + V with the norm (1 + /D)(1 -v')= -1, so t + xX = (1 + V)n with n 
odd. Thus we have 

(1 + V) 2= 3 + 2V2; (1 + V2) 3= 7 + 5V2; (1 + V2)5 = 41 + 292. 

The next solution is obtained from 

(1 + /i) = 239 + 169V2/, 

namely, 2.1692 - 1 = 2392. 
* The ring of integers of Q(O 2) is euclidean. There are 16 real quadratic fields Q(J) 

with a euclidean ring of integers, namely 

d = 2,3,5,6,7,11,13,17,19,21,29,33,37,41,57,73. 

* 2 X2 + 29 is an optimal prime-producing polynomial. Such polynomials were first 
considered by Euler-they are polynomials f e /[ X] that assume as many initial 
prime values as they possibly can. More precisely, let f e /[ X], with positive 
leading coefficient and f(O) = q, a prime. There exists the smallest r > 0 such that 
f(r) > q and qlf(r). The polynomial is optimal prime-producing if f(k) is prime 
for k=0,l,..,r- 1. 
Euler observed that X2 + X + 41 is optimal prime-producing, since it assumes 
prime values at k = 0, 1, . . ., 39, while 402 + 40 + 41 = 412. 
In 1912, Rabinovitch showed that the polynomial f(X) = X2 + X + q (with q 
prime) is optimal prime-producing if and only if the field Q( 1 - 4q ) has class 
number 1. 
Heegner, Stark, and Baker determined all the imaginary quadratic fields Q(/Y) 
(with d < 0 and d square-free) with class number 1: 

d = -1, -2, -5, -7, -li, -19, -43, -67, -163. 

These correspond to the only optimal prime-producing polynomials of the form 
X2 + X + q, namely q = 2,3,5, 11, 17,41. X2 + X + 41 is the record prime-produc- 
ing polynomial of the form X2 + X + q. 
Frobenius (1912) and Hendy (1974) studied optimal prime-producing polynomials 
in relation to imaginary quadratic fields having class number 2. There are three 
types of such fields: 
(i) Q( -2p), where p is an odd prime; 
(ii) Q(V- p), where p is prime and p 1 (mod 4); 
(iii) Q(-pq) where p, q are odd primes, with p < q and pq 3 (mod 4). 
For the types of fields above, the following theorem holds: 
(i) Q(V - 2 p ) has class number 2 if and only if 2 X2 + p assumes prime values at 

k=0,1,..., p-1. 
(ii) Q(F-p) has class number 2 if and only if 2 X2 + 2 X + P21 assumes prime 

values at k = 0,1,. p - 3 
2 

(iii) Q( --pq) has class number 2 if and only if pX 2 + pX + P 4 q assumes prime 
values at k=,, P4 -q2. 
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Stark and Baker determined the imaginary quadratic fields Q(Gd) (with d < 0 and 
d square-free) that have class number 2. According to their types, they are: 
(i) d= -6, -10, -22, -58 
(ii) d= -5, -13, -37 
(iii) d = -15, - 35, - 51, - 91, - 115, - 123, - 187, - 235, - 267, - 403, - 427. 
With these values of d one obtains optimal prime-producing polynomials. 
In particular, 2 X2 + 29 is an optimal prime-producing polynomial, with prime 
values at k = 0,1, . 28; it corresponds to the field Q( -528), which has class 
number 2. 

* 29 is the number of distinct topologies on a set with 3 elements. Let ;r, denote the 
number of topologies on a set with n elements; thus r1 = I and r2 = 2. One knows 
the values of , for n < 9 (Radoux, 1975). 

Approaching the thirties, the age of confidence, life was smiling. 29 was the first 
twin prime age I reached since I became a mathematician by profession, so I select 
the number 

30 

* At this age I was in Bahia Blanca, Argentina, preparing a book which has, I believe, 
the distinction of being the southern-most published mathematical book. (At least 
this is true for books on ordered groups-but mine is not the northern-most 
published book on the subject.) 

* There is only one primitive pythagorean triangle with area equal to its perimeter; 
namely (5,12,13), with perimeter 30. 

* 30 is the largest integer d such that if 1 < a < d and gcd(a, d) = 1, then a is a 
prime. Other numbers with this property are 3, 4, 6, 8, 12, 18, and 24. This was first 
proved by Schatunowsky in 1893 and, independently, by Wolfskehl in 1901. 
(Wolfskehl is the rich mathematician who donated 100,000 golden marks to be 
given to the author of the first proof of Fermat's last theorem to be published in a 
recognized mathematical journal.) 
This result has an interpretation as follows. Given d> 1 and a, 1 <a <d, 
gcd (a, d) = 1, by Dirichlet's theorem, there exist infinitely many primes of the form 
a + kd (k ? 0). Let p(a, d) be the smallest such prime, and let 

p(d) = max{ p(a, d)I? < a < d,gcd(a, d) = 1). 

If d > 30, then p(d) > d + 1. In particular, 

liminfdp+d) > 1. 

Pomerance has shown: 

liminf p(d) 2 ee p( d)logd C 

where qp(d) is Euler's totient of d and y is the Euler-Mascheroni constant. 
On the other hand, as shown by Linnik, for d sufficiently large, p(d) < dL, where 
L is a constant. Heath Brown showed that L < 5.5. 
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32 
* 32 is the smallest integer n such that the number ?yn of groups of order n (up to 

isomorphism) is greater than n:Y32 = 51. 
I hate the number 32. At 32 degrees Fahrenheit, water becomes ice and snow 
begins to fall. Let us change the subject! 

Older people remember best the events of their youth and those of the more recent 
past. I haven't forgotten anything I did not want to forget, so I could let you know 
about all the years 33, 34,.... But I would rather concentrate on the 60's. 

60 
* 60 was the base of numeration in the counting system of the Sumerians (ca. 3500 

BC). Today we still use the sexagesimal system in astronomy and in the subdivisions 
of the hour. 

* 60 is a highly comnposite number. Such numbers were introduced and studied by 
Ramanujan (1915): The natural number n is highly composite if d(n) > d(m) 
for every in, 1 <in <n, where d(n) = number of divisors of n. Thus d(60)= 
d(22 - 3 - 5) = 3 2 2 = 12. The smallest highly composite numbers are 

2,4,6,12,24,32,48,60,120,180,240,360,720,840,... 

* 60 is a unitarily perfect number, which I now define. A number d is a unitary 
divisor of n if dIn and gcd(d, n/d) = 1; n is tunitarily perfect if 

n = ,{dIl d < n, d unitarydivisorof n}. 

Unitary divisors of 60 are 1, 3, 4, 5, 12, 15, 20 and their sum is indeed 60. 
Conjecture: There exist onlyfinitely mnany unitarily perfect numbers. 

The only known unitarily perfect numbers are 

6,60,90,87360, and 218 3.7 11 13 19 37 79d109d157 313. 

* 60 is the number of straight lines that are intersections of the pairs of planes of the 
faces of a dodecahedron. 

* 60 is the order of the group of isometries of the icosahedron. This is the alternating 
group on 5 letters. It is the non-abelian simple group with the smallest order. The 
simple groups have been classified-a great achievement! There are 18 infinite 
families: 
* cyclic groups of prime order; 
* alternating groups A,, with n > 5; 
* six families associated to the classical groups; 
* ten families associated to Lie algebras (discovered by Dickson, Chevalley, Suzuki, 

Ree, and Steinberg). 
There are also 26 "sporadic" groups, which don't belong to the above families. The 
sporadic groups with the largest order if Fischer's monster, which has 

246 *320.59.76.112. 13 3. 17.19.23.29.31.41.47.59.71 ? 8 1053 

elements. 
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61 
* A curiosity: Let k ? 0, and let a,, . .., ak, x, y be digits. If the number (in decimal 

notation) 
a1a2 ... ak XyXYXyXyXy 

is a square, then xy = 21, 61, or 84. Examples: 

1739288516161616161 = 13188208812; 258932382121212121 = 5088539892. 

* The Mersenne number M61 = 261-1 is a prime. Today there are 37 known prime 
Mersenne numbers Mp= 2 P- 1, namely, those with 

p = 2,3,5,7,13,17,19,31,61,89,107,127,521,607,1279,2203,2281, 
3217,4253,4423,9689,9941,11213,19937,21701,23209,44497,86243, 
110503,132049,216091,756839,859433,1257787,1398269,2976221, 
and 3021227. 

23021227 - 1 is also the largest prime known today. 

62 

This number is remarkable for being so uninteresting. As a matter of fact, suppose 
that, for some reason or another, there is some number that is not remarkable. Then 
there is the smallest non-remarkable number, which is therefore remarkable for being 
the smallest non-remarkable number. 

But this is just another example of Russell's paradox ... 

63 
* This number appears in a cycle associated with Kaprekar's algorithm for numbers 

with 2 digits. This algorithm, for numbers with k digits, goes as follows: Given k 
digits a, ... ak, not all equal, with a, ? a2 ? ? ak > 0, consider two numbers 
formed using these digits: a1a2 ... ak and akak-l ... a,. Compute their difference, 
and repeat the process with the k digits so obtained. 
Kaprekar's algorithm for 2, 3, 4, and 5 digits leads to the following fixed points or 
cycles. 

2 digits > cycle 63-27-45-09-81 
3 digits -* 495 
4 digits -* 6174 
5 digits -* one of the three cycles: 99954-95553 

98532-97443-96642-97731 
98622-97533-96543-97641 

Example: {3,5}: 53 - 35 = 18, 81 - 18 = 63, 63 - 36 = 27, 72 - 27 = 45, 54 - 45 = 
09, 90 - 09 = 81. 

* 63 is the unique integer n > 1 such that 2n - 1 does not have a primitive prime 
factor. Explanation: If 1 < b <a, with gcd (a, b) = 1, consider the sequence of 
binomials an - bn for n ? 1. The prime p is a primitive prime factor of an - bn if 
plan-bn but ptam-bm if 1<m<n. 
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Zsigmondy proved, under the above assumptions, that every binomial an - b has a 
primitive prime factor, except in the following cases: 
(i) nr=1, a-b=1; 
(ii) n =2, a and b odd, and (a + b) a power of 2; 
(iii) n = 6, a = 2, b = 1. 
This theorem has many applications in the study of exponential diophantine 
equations; see [4]. Explicitly, when a = 2 and b = 1, the sequence is: 

1,3,7,15 = 35,31,63 = 32 7, 127,257,511, 1023=3 = 11 31,... 

64 

64 is almost 65, a number I hated to reach, but which nevertheless has many 
interesting features. 

65 

* 65 is the smallest number that is the sum of 2 squares of natural numbers in 2 
different ways (except for the order of summands): 

65 = 82 + 12 = 72+ 42 

Recall Fermat's result: n is a sum of 2 squares if and only if for every prime 
p 3 (mod 4), vp(n) is even. (Here vp(n) denotes the p-adic value of n, that is 
pvp(n) I n but pvp(?l)?l does not divide n.) The following formula gives the number 

r(n) = #{(a, b) 10< b < a and n = a2 + b2} 

For each d > 1, let 

I d-I 

xy(d)= (1) 2 if d is odd, 
1 0 if d is even. 

Let R(n) = Edin X(d). Then { R(n) if R(n) is even, 

r(n) I= Rn 
2 if R(n) is odd. 

Example: 65 = 5 13 has divisors 1, 5, 13, 65 and R(65) = Edj65 y(d) = 4, so 
r(65) = 2. 

* 65 is the smallest hypotenuse common to two pythagorean triangles. This follows 
from the parametrization of the sides of pythagorean triangles: If 0 < x, y, z, with y 
even and x2 + y2 = z2, then there exist a and b, 1 < b < a, such that 

x=a2 -b2; y=2ab; z=a2 +b2 

Moreover the triangle is primitive (i.e., gcd(x, y, z) = 1) if and only if gcd(a, b) = 1. 
From 65 = 82 + 12 = 72 + 42 one gets the pythagorean triangles (63,16,65) and 
(33,56,65). 
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* A curiosity: 65 is the only number with 2 digits d, e, 0 < e < d < 9, such that 
(de)2 - (ed)2 = El, a square. Indeed, 652 - 562 = 332, and the uniqueness follows 
from the parametrization indicated above. 

* 65 is also a remarkable number of the second kind, that is, it counts the number of 
remarkable numbers satisfying some given property. In the present case, 65 is 
perhaps the number of Euler's numeri idonei. I say "perhaps" because there is still 
an open problem, and instead of 65 there may eventually exist 66 such numbers. 

Numeri idonei 

What are these numeri idonei of Euler? Also called convenient numbers, they were 
used conveniently by Euler to produce prime numbers. 

Now I'll explain what the numeri idonei are. Let n 2 1. If q is an odd prime and 
there exist integers x, y 2 0 such that q = X2 + ny2, then: 

(i) gcd(x,ny)=1; 
(ii) if q = X2 + ny2 with integers x1, Yi 2 0, then x = xl and y = Yi 

We may ask the following question. Assume that q is an odd integer, and that 
q = X2 + ny2, with integers x, y ? 0, such that conditions (i) and (ii) above are 
satisfied. Is q a prime number? 

The answer depends on n. If n = 1, the answer is "yes," as Fermat knew. For 
n = 11, the answer is "no": 15 = 22 + 11 12 and conditions (i) and (ii) hold, but 15 is 
composite. Euler called n a numnerus idoneus if the answer to the above question is 
yes. 
Euler gave a criterion to verify in a finite number of steps whether a given number 

is convenient, but his proof was flawed. Later, in 1874, Grube found the following 
criterion, using in his proof results of Gauss, which I will mention soon. Thus, n is a 
convenient number if and only if for every x ? 0 such that q = n + X2 < 4n, if q = rs 
and 2x < r < s, then r = s or r = 2x. 

For example, 60 is a convenient number, because 

60 + 12 = 61*, 
60 + 22 = 64 = 4 16 = 8 8, 
60 + 32 = 69*, 
60 + 42 = 76* 

and the numbers marked with a * do not have a factorization of the form indicated. 
Euler showed, for example, that 1848 is a convenient number, and that 

q = 18518809 = 1972 + 1848 1002 

is a prime number. At Euler's time, this was quite a feat. 
Gauss understood convenient numbers in terms of his theory of binary quadratic 

forms. The number n is convenient if and only if each genus of the form x2 + ny2 has 
only one class. 

Here is a list of the 65 convenient numbers found by Euler: 

1,2,3,4,5,6,7,8,9,10,12,13,15,16,18,21,22,24,25,28,30,33, 
37,40,42,45,48,57,58,60,70,72,78,85,88,93,102,105,112,120, 
130,133,165,168,177,190,210,232,240,253,273,280,312,330,345, 
357,385,408,462,520,760,840,1320,1365,1848. 
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Are there other convenient numbers? Chowla showed that there are only finitely 
many convenient numbers; later, finer analytical work (for example, by Briggs, 
Grosswald, and Weinberger) implied that there are at most 66 convenient numbers. 

The problem is difficult. The exclusion of an additional numerus idoneus is of a 
kind similar to the exclusion of a hypothetical tenth imaginary quadratic field (by 
Heegner, Stark, and Baker), wlhich I have already mentioned. 

An extraordinary conjunction 

If your curiosity has not yet subsided, I was struck in 1989, in Athens, at the occasion 
of my "Greek Lectures on Fermat's Last Theorem," by an extraordinary conjunction 
of numbers. Once in a lifetime, and not to be repeated before ... 

At that year, my wife's age and my age were 59 and 61-twin primes (but we are 
not twins); at that same year, we had been married 37 years-the smallest irregular 
prime. If you are still interested, Kummer had proved that Fermat's last theorem is 
true for all odd prime exponents p that are regular primes. These are the primes p 
that do not divide the class number of the cyclotomic field generated by the pth root 
of 1. Kummer also discovered that 37 is the smallest irregular prime. Pity that 1989 
(the year of my Athens lecture) is not a prime. 

So you are challenged to find the next occurrence of numbers like 37, 59, 61, but in 
a prime-numbered year. 

Notes This paper on remarkable numbers would not have been possible were it not 
for the very original book by F. Le Lionnais, Les Nomnbres Renarquables, published 
in 1983 by Hermann, in Paris. 

Francois Le Lionnais was not a mathematician by profession, but rather a scientific 
writer, and as such, very well informed. His book Les Grands Courants de la Pensee 
Mathematique is very engrossing to read even today. Just after the war he gathered in 
this book the ideas of several young French mathematicians-still little known at that 
time-who would soon rise to the pinnacle. An English translation and the original 
are available in good libraries. I have an autographed copy of the book on remarkable 
numbers, where Le Lionnais thanked me for calling his attention to the number 1093. 
You may read about this number in my article 1093, Math. Intelligencer 5 (1983), 
28-34. 

Another book of the same kind, which served me well, is: D. Wells, The Penguin 
Dictionary of Curious and Interesting Numbers, Penguin, London, UK, 1986. 

For results on algebraic numbers, nothing is easier for me than to quote my own 
book [3], to appear in a new edition at Springer-Verlag. For nunwri idonei, see [1]. 
Concerning primitive factors of binomials, see [4]. On prime numbers, Fibonacci 
numbers and similar topics, see [5]. For further reference, see [2]. 

The following list of references is, it goes without saying, incomplete. 
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The Newest Inductee 
in the Number Hall of Fame 

COLIN C. ADAMS 
Williams College 

Williamstown, MA 01267 

"Rational and irrational, algebraic and transcendental, whole, natural, positive, nega- 
tive, even, odd, prime, cardinal, ordinal, yes even p-adic numbers: It gives me great 
pleasure to welcome you all to these induction ceremonies at the Number Hall of 
Fame here in Canton, Ohio. It's truly gratifying to see such a tremendous and diverse 
turnout for this event. How wonderful it is that we can forget our differences, put 
aside our animosities, and come together to honor those amongst us who have truly 
achieved a purpose in life above and beyond our appearance on ledgers, computer 
screens, and cash registers around the globe. 

The vast throng of numbers here today must reflect, at least in part, the rarity of 
these occasions. We are not that type of Hall of Fame where any number eventually 
makes the cut. Not like the Hall of Fame of Physical Constants, where a number is 
embarrassed not to eventually appear in their list. No, as you can see by the small set 
of numbers sitting up on the dais, including most of the past recipients of the award, 
this honor is bequeathed on only a select few. 

Let me quickly introduce you to our past recipients. On the far left we have the first 
inductee into the Number Hall of Fame, someone I need say little about, as eveiyone 
knows her well. Yes, it's the delightful number One. How could anyone be less than 
charmed by her ability to multiply a number without altering it? 

Sitting to the left of One is the incomparable e, that paradoxical sorcerer who when 
put to the power x becomes his own derivative. What a pleasure it is to have you here 
today, sir. 

Just to the left of e, we have that mandarin enigma, the Buddha of math, Mr. Zero. 
Please, don't get up. It's not a good idea after your triple bypass. 

Next to Mr. Zero, we have the ebullient Two. As he is all too fond of saying, "You 
need Two to tango." Seated next to Two is his son, V2, who with his simple and 
forthright manner, hardly deserves to be called irrational. 

Seated in the empty chair to the left of V? is his imaginary friend i. Please, no 
snickering from you Bernoulli numbers in the back. Having an imaginary friend 
doesn't necessarily mean you're a couple million digits past rational, even if in this 
particular case, it happens to be true. 

I1+ V/U 
And at the end sits 2 , that icon of Greek aesthetics, known affectionately as 

the Golden Ratio. Her attendance at any event brings an elegance and refinement to 
the proceedings. 

Several of our inductees could not be with us today, including Euler's constant, 
N 

better known as lim E -ln(N) or.5772157... to her friends. Unfortunately, 
N-oo n= 

she twisted her ankle at last night's pre-ceremony ball while doing the Watusee. 
Finally, standing right next to me, we have someone who needs no introduction of 

her own, but who has agreed to give the introduction for our new inductee. Ladies 
and Gentlemen, I am very pleased to present IT." 

"Well thank you, Six, for such a warm welcome from the perfect host. I am greatly 
honored to have the privilege of introducing our new inductee. Perhaps I should 
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begin by explaining why I was chosen to make these remarks. Many of you know me 
as the area of a circle of radius one, or half the perimeter of that circle. You may be 
familiar with my appearance with my dear friend e in normal distributions as defined 
in probability. I have been lucky in my career to have more than one role to play. But 
perhaps you are unfamiliar with another capacity where I have been able to contribute 
in my own small way, really just over the last hundred or so years, since the discovery 
of hyperbolic geometry. 

Let me give a little background on that, as I realize some of you numbers haven't 
been paying a lot of attention to recent advances in geometry. Discovered in the mid 
1800's, hyperbolic geometry's existence was the proof that Euclid's parallel postulate 
was independent of the other axioms of geometry, as here was a geometry that did not 
satisfy it. Its properties were so extraordinary that Gauss knew about it for 30 years, 
but kept mum, for fear of denigrating verbal abuse from his colleagues. 

Let me begin my description of hyperbolic geometry with the upper-half-plane 
model of the hyperbolic plane, which is relatively easy to visualize. I brought along 
some graphics to help us along. May we have the first slide, please? In FIGURE 1, we 

x-axis 
FIGURE 1 

The upper-half-plane model of the hyperbolic plane. 

see the points in the 
hyperboi?c 

plane, namely all the points in the x-y plane having 
positive y-coordinate. The curves that play the role of straight lines in this geometry, 
what we call geodesics, wir be the vertical half-lnes, and the semi-circles perpendicu- 
lar to the x-axis. By calling such a curve a geodesic, we simply mean that the shortest 
path between two points on such a curve is the sub-arc of that curve with those two 
points as endpoints. 

We measure the length of a curve by integrating 1/y along it. So the distance 

between two points is ds, where y is the geodesic path from the one point to 
the other. 

Now, as you know, in the Eucldean plane, the sum of the angles of a triangle, 
measured in radians, is always exactly equal to me, that is to say ir. Moreover, a 
triangle can have any positive area. In particular, there is no upper limit to the size of 
a triangle. 

But in the hyperbolic plane, we encounter a very different world indeed. The area 
of a triangle is given by r-(a+3+ y), where a, 3, and y are the angles of the 
triangle given in radians. I will demostrate this in just a bit, but first let me point out 
the implications. The angles of the triangle determine the area. This means there can 
be no scaling up or down as there is in Eucidean space. A triangle with specified 
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angles only comes in one size. Moreover, since the area of a triangle must be positive, 
the sum of the angles of a hyperbolic triangle must be strictly less than 1T. Clearly, 
hyperbolic space is not just a slight variation on Eucidean space. The most basic 
tenets of geometric behavior, which we consider interwoven into the fabric of 
Euclidean geometry, become nonsensical in hyperbolic space. 

To see that the area of a hyperbolic triangle is given by ir - (a + 13 + y), let us first 
compute the area of a triangle having one vertex with angle zero. Now, in order to 
have an angle of zero, that vertex of the triangle must be pulled all the way out to a 
point on the boundary of hyperbolic space, either on the x-axis or out the positive 
y-axis at {oo}. Although this means the vertex will be missing from the triangle, since 
the boundary of hyperbolic space is not a part of hyperbolic space, we can still 
determine the area of this slightly cropped triangle. It is convenient to choose the 
vertex with angle zero to be the one centered at {oo}, and the bottom edge of the 
triangle to appear on the unit circle, so our triangle appears as in FIGURE 2. All 
triangles with a single angle of zero are equivalent to a triangle like this one. 

* 1 Oh b x-axis 

FIGURE 2 
A hyperbolic tnangle with one angle 0. 

The hyperbolic area A of this triangle T is obtained by integrating 1/y2 over the 
triangle. Since a = cos(r - a) and b = cos 1, we obtain: 

A= I -2 dydx = arcsin(b) -arcsin(a) 

= 1r/2 -13- (a - ir/2) = T- (ca +13). 
A triangle T1 with three non-zero angles can always be thought of as a sub-triangle 

of a triangle such as T, by extending one edge of T1 off to infinity and pulling a vertex 
of T1 on that edge off to infinity, as in FIGURE 3. The area of triangle T1 will be the 
difference of the areas of the two triangles T and T2, each of which has a vertex with 
angle zero. 

Therefore A(T1) = A(T)-A(T2)=7r-a-13-(1r-(/32 + Y2))= 7T-(a +/31 + y1). 
This completes the proof. 

You will notice right away that the smaller the angles, the bigger the area. So if we 
want a triangle with as large an area as possible, we should take the angles to be as 
small as possible. Actually, we would like to take a triangle with all angles equal to 
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V~~~~~~~~~ e ,-*~- fl'' 

.4- 

FIGURE 3 
A(T1) A(T) A(T2) 

zero. If we allow ourselves to put all the vertices of the triangle on the boundary of 
hyperbolic space, we construct a triangle with all angles equal to zero, and area equal 
to ir. Such a triangle, missing its three vertices, is called an ideal triangle. Note that 
we needn't take any of the vertices up at {Xo} if we don't want to. (See FIGURE 4.) 

So to make the point you have all been patiently waiting for, besides being the area 
of a circle of radius 1 and half the perimeter of that same circle, I am also the area of 
any ideal triangle in hyperbolic 2-space, which happens to be the triangle of greatest 
area in hyperbolic space. But what does this have to do with our newest inductee into 
the Number Hall of Fame? 

FIGURE 4 
Ideal triangles in the upper-half-plane model. 

My esteemed colleagues of all persuasions I am proud to introduce to you the 
Gieseking constant Little known outside of hyperbolic circles e Cu is an up-and comer 
who will be playing an important role for many years to come. Let me define her for 
you in n a nalogy to my own realization as the area of an ideal triangle in the 
hyperbolic plane. However now we will step up a dimension to hyperbolic 3-space. 
Let us work in the upperhalf -space model of hyperbolic 3bspace, where geodesics 
correspond to vertical half lines and semi circles perpendicular to the boundary Here, 
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1~~ 

FIGURE 5 
An ideal tetrahedron in the upper-half-plane model of hyperbolic 3-space. 

we also have geodesic planes that correspond to hemispheres perpendicular to the 
boundary and vertical half-planes. And instead of an ideal triangle, we will look at 
what is called an ideal tetrahedron. To construct such an object, we want four faces, 
each individually an ideal triangle contained within a geodesic plane, such that any 
two share an edge which is itself a geodesic, and any three meet at a single ideal 
vertex. For convenience, we will choose one of the vertices to occur up at the top of 
the positive z-axis, at {oo}, as in FIGURE 5. 

Such an ideal tetrahedron has a variety of interesting properties. First I will 
demonstrate that the sum of the three dihedral angles around a vertex is equal to me, 
which is to say iT. How to see this? Slice the top off the tetrahedron with a horizontal 
plane, called a horosphere. Then the dihedral angles of the three vertical edges form 
the three angles of a Euclidean triangle in that plane, which must therefore sum to IT. 

Since the vertex at {oo} is no different from any other vertex, but just appears so in this 
model, the same fact will hold for all of the vertices. 

In addition, any two opposite dihedral angles of the tetrahedron are equal to one 
another. Here is a quick trick to convince yourselves that this is true. Take two 
opposite edges. Then there is a unique geodesic perpendicular to both, as in FIGURE 6. 
This will contain the shortest geodesic arc from one to the other. Such a shortest arc 
always exists between two geodesics in hyperbolic space, assuming they do not 
intersect in either an interior point or their endpoints. Now rotate the entirety of the 
ideal hyperbolic tetrahedron 180 degrees about the geodesic. Each of the two 
opposite edges will be sent back to itself, but with its endpoints interchanged. Thus, 
this rotation permutes the vertices of the tetrahedron and therefore sends the entire 
ideal tetrahedron back to itself. Moreover, it switches the other two pairs of opposite 
edges, and they must therefore have the same dihedral angles. Since we can do this 
for any of the three pairs of opposite edges, the dihedral angles on each opposite edge 
must be the same. 

Thus three dihedral angles around a single vertex determine all the dihedral angles. 
This is enough to determine the tetrahedron itself. Since these three angles sum to i7, 
there are actually only two degrees of freedom for ideal tetrahedra, say a and ,3. 
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r 

FIGURE 6 
Opposite dihedral angles are equal. 

By now you may be wondering, in analogy with our discussion of the area of 
hyperbolic triangles in the hyperbolic plane, what is the largest possible volume of a 
tetrahedron in hyperbolic space? Clearly, if we take a tetrahedron with vertices 
occurring inside hyperbolic space, we can always find one a little bigger, by pulling 
one of the vertices out a little farther toward infinity. But if we also allow tetrahedra 
with ideal vertices, then the maximum volume will occur for a tetrahedron with all 
ideal vertices, which is to say an ideal tetrahedron. 

Remember that for ideal triangles, all such had the same area. But for ideal 
tetrahedra, the volume is not always the same. It depends on the dihedral angles a, /, 
and y. For what ideal tetrahedron is the volume the largest possible? We will see that 
it is the regular one, with all dihedral angles 'r/3. That's not too surprising, since if a 
maximum exists, we would expect it to occur at a tetrahedron with a lot of symmetry. 

First, let's find a formula that gives the volume of an ideal tetrahedron in terms of 
its determining angles. We need to integrate 1/z3 over the entirety of the tetrahe- 
dron. Let's choose our ideal tetrahedron to have one vertex up at {oo} and the bottom 

FIGURE 7 
Projecting an ideal tetrahedron to the x-y plane. 
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hemispherical face on the hemisphere given by z = 1- - y2. Looking down 
from way high up on the positive z-axis, the tetrahedron looks like a triangle inscribed 
in the unit circle. We can orient the triangle so that one edge is perpendicular to the 
x-axis. A triangle inscribed in the unit circle always has its center at the center of the 
circle, so we can cut this triangle up into six right triangles as in FIGURE 7. Note that 
the labeling of the angles at the center is a famous fact from geometiy that follows 
when one considers the three isosceles tliangles that together make up the inscribed 
triangles. 

First, we will find the volume of that part of the tetrahedron above a single one of 
these triangles, the one that is shaded in the figure. Let's call that volume V(W). 

We need to form a triple integral as z ranges from V1 - x2 _ y2 to 00, y ranges 
from 0 to x tan a, and x ranges from 0 to cos a. Thus 

cos a x tan a 1 
V(a)=f J J _ 3 dzdydx 

jcos a x tana ( 

Jo Jo ~2(1 _2y)d X 

~cos a ~x taii a I 

tan Jo 41-x2 (1 -x2 -y + 1-x2 +)dyJ dx cosa 1 1 {R/1-X2 x tanoA 

4 -xtn1-x2 l( 1-x2 -xtany) 
cos a 1 1 5Y1-I$x2 7so+xsina d 

Jo n4 1-X2 C 2cos a -x sin a 

Substituting in x = cos 0, so V1 - x2 = sin 0 and dx = - sin 0 d 0, we obtain 

-f In(sn +a)do. 4 t n(sin( 0 - ax))d 

Letting u = 0- a, the integral becomes 

V( a) = l f1 / nf sin(u+2a) ) dit. 

We will use this formula as is. Thus, the volume of the entire ideal tetrahedron is 

Vol(T) =2V( a) +2V( 8) +2V(y). 

Now, of course, this is not the most satisfying of formulas, as one would prefer a 
closed form made up of elementary functions rather than a formula involving integrals 
of natural logs of trig functions. However, for our purposes, it will suffice. Our goal is 
now to determine the angles a, /3, and y that will give the maximum volume for this 
ideal tetrahedron. To that end we will use Lagrange multipliers, with Vol(T) a 
function depending on a, /3, and y, and constraint a + 8 + y - T= 0. We find that 
at the maximum, 

V'( a) = V'( /8) = V'(,y) = A. 
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To compute V'(a), we need to take the derivative of an integral with respect to a 
variable that appears in a limit of integration as well as in the integrand. Using the 
chain rule and the fundamental theorem of calculus, we find 

V'( ) = 1 l sin(-w/2 +a) 1 if /2~ -cos(ut + 2 a)2d 
4 sin(7T/2- a) J 4J sin(u+2 a) 

=-4 11(1) + 1 .T cos(w) dw 
4 

~~~~sin(w) 

=0 + 
I 

ln( /2+ a)) 

1 / cos a 
-In - ~1 -- In (2 sin a). 2 ln( 2sin a cos a 2 

Thus, in order that V'(a) = V'(,/) = V'(y), it must be that sin a = sin /8 = sin y. 
If it is not true that a = 8 = -y, then it must be that one of the angles is IT, and the 
other two are 0, but not surprisingly, this yields a minimum volume of 0. Thus, 
the only possibility is a = / = y = iT/3, and the regular ideal tetrahedron with all 
dihedral angles equal to iT/3 is the hyperbolic tetrahedron of maximal volume. 

As I gaze out upon you, I can see that your curiosity is piqued. Exactly what is that 
volume? How big can a tetrahedron be in hyperbolic space? The volume of the ideal 
regular tetrahedron is given by 6V(T/3). Unfortunately, we cannot directly integrate 
to find V(T/3). But by numerical integration, V(T/3) = .16915 ... and therefore the 
largest volume for a tetrahedron in hyperbolic space is 1.01494... 

That number, 1.01494..., is our esteemed guest, the newest member in the 
Number Hall of Fame. I am pleased to present to you V0, also known as the 
Gieseking constant. She will make a few remarks." 

"Oh, what an honor it is to be up here with such an august group. I am thrilled to 
be here. And it is appropriate that so many different kinds of numbers are present, 
because the honest truth is that I do not myself know to what group I belong. Am I 
rational, am I irrational? Am I algebraic or transcendental? I do not know the answers 
to these most basic questions about my true identity. In time, perhaps, I will know 
where I belong, but for now, I am a representative of all the diversity inherent in 
numbers, exempt from the systematic classification so worshipped in our times. 

As iT mentioned, I am the largest volume of a tetrahedron in hyperbolic 3-space, 
ideal or otherwise, and I occur exactly for the volume of an ideal regular tetrahedron. 
In fact, I am the eldest sibling in a family of numbers. My sisters and brothers are the 
volumes of the ideal regular n-simplices in hyperbolic n-space. They are also the 
maximal volumes for any n-simplex, ideal or otherwise, in hyperbolic n-space. This 
nontrivial fact was only proved in 1981 and appears in a paper by Haagerup and 
Munkholm (cf. [2]). 

I should explain where I come by the name "Gieseking's constant." H. Gieseking 
was a mathematician around the turn of the last century. He realized that if one takes 
an ideal regular tetrahedron and glues up pairs of faces by appropriate hyperbolic 
isometries, one can create a hyperbolic manifold, appropriately called Gieseking's 
manifold. This manifold is interesting for a variety of reasons. First of all, it is not a 
compact manifold. Because it is constructed from an ideal tetrahedron, the missing 
vertices make it noncompact. 
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Second, it has a volume exactly equal to me, which is to say 1.01494.... So here is 
a noncompact manifold that still has finite total volume. Even though its arm reaches 
all the way out to infinity, the cross section of the arm shrinks exponentially to 0 in 
area, and the manifold still has finite volume. 

Third, it is non-orientable. If we were all inside this manifold and you, 81, were to 
walk through a face of the tetrahedron, you would suddenly appear to us to be 18. 
You would be reversed right to left. Bit of a scaly thought, isn't it? Oh, no insult 
intended, 18. 

Fourth, it is double covered by the figure-eight knot complement. I won't go into 
details here, but this is a truly remarkable fact. It is one example of the tremendously 
important ties between hyperbolic geometry and so-called "low dimension topology" 
that were established by William Thurston in the late seventies and early eighties. 

Finally, it is known that among all noncompact hyperbolic 3-manifolds, this particu- 
lar one has the least volume (cf. [1]). So I am the least volume among all volumes of 
noncompact hyperbolic 3-manifolds, orientable or otherwise. 

At any rate, I just wanted to thank you from the bottom of my decimal point for the 
great honor you have bestowed upon me. Now, I will turn the podium back over to 
Six." 

"Well, thank you G.C., for those eloquent remarks. You know, numbers, she is too 

modest to say it, but she is also equal to 22 2 where VQ[j ](2) is the value 

of the Dedekind zeta function for the field Q4[ix] at 2 (cf. [4]). Of course, this makes 
her quite intriguing to number theorists. Moreover, when divided by our friend iT, 

she mysteriously produces the logarithm of the Mahler measure of the polynomial 
1 + x + y (cf. [3]). Her unexpected appearances in a variety of disparate mathematical 
locations make her a very enchanting and mysterious figure. 

But I see from the amount of fidgeting in the audience that our time is up. We will 
follow these ceremonies with the traditional banquet and karaoke contest. I want 
to thank the organizing committee, which again consisted of the odd numbers less 
than 8. Not too surprisingly, the menu for the banquet is a repeat of last year's: prime 
rib, 3-bean salad, 7-grain bread, and 5-layer cake for dessert. This year, we ask that all 
integers greater than 999 and all decimal expansions please use the specially widened 
food line to the left, so we can avoid the congestion, antagonism, and subsequent 
chaos of previous years. I have been instructed to particularly request that the 
Fibonacci numbers behave themselves. And again, thanks for coming. See you all 
next year. 
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The Crossing Number of Cm X Cn: 
A Reluctant Induction 

NADINE C. MYERS 
Hamline University 

St. Paul, MN 55104-1284 

1. Introduction 

"Even a fool," remarked Paul Erdo's in one of his many lectures, "can ask questions 
that the wisest man cannot answer." This statement is true for many areas of 
mathematics-perhaps nowhere more than in graph theory. The four-color theorem, 
proved more than a century after it was proposed, illustrates Erdo's's point. Another 
example is Turan's "Brick Factory" Problem. Although it was thought for some years 
to have been solved, flaws in the proof were discovered nearly twenty years later, and 
it remains open today. In this article, we explore another combinatorial problem, one 
that is simple to state and would seem to be provable by induction, but that has been 
found to be tantalizingly difficult. It is a crossing number problem that can be stated 
roughly as follows: For a rectangular grid on a torus, is there a planar drawing of this 
graph that has fewer crossings than the one shown in FIGURE 1? Attempts to solve this 

FIGURE 1 

Cil,, X Cn - 

problem have used varying techniques, none of which has been entirely successful. 
Below we give a brief history of crossing numbers; then we present our problem, its 
history, and current status. 

2. Origin of the crossing number problem 

In 1977 the Hungarian mathematician Pal Turan wrote [19]: 

In July 1944 the danger of deportation was real in Budapest, and a 
reality outside Budapest. We worked near Budapest, in a brick factory. 
There were some kilns where the bricks were made and some open 
storage yards where the bricks were stored. All the kilns were connected 
by rail with all the storage yards. The bricks were carried on small wheeled 
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trucks to the storage yards. All we had to do was to put the bricks on the 
trucks at the kilns, push the trucks to the storage yard, and unload them 
there. We had a reasonable piece rate for the trucks, and the work itself 
was not difficult; the trouble was only at the crossings. The trucks 
generally jumped the rails there, and the bricks fell out of them; in short 
this caused a lot of trouble and loss of time which was rather precious to 
all of us (for reasons not to be discussed here). We were all sweating and 
cursing at such occasions, I too; but nolens-volens the idea occurred to me 
that this loss of time could have been minimized if the number of 
crossings of the rails had been minimized. But what is the minimum 
number of crossings? I realized after several days that the actual situation 
could have been improved, but the exact solution of the general problem 
with m kilns and n storage yards seemed to be very difficult and again I 
postponed my study of it to times when my fears for my family would end. 
(But the problem occurred to me again not earlier than 1952, at my first 
visit to Poland where I met Zarankiewicz. I mentioned to him my "brick 
factory" problem....) This problem has ... become a notoriously difficult 
unsolved problem. 

Turan's statement puts the origin of the crossing number problem at mid-twentieth 
century. Graph theory itself is not much older. Although Euler's solution of the 
Konigsburg bridge problem appeared in 1736, mathematics historians date the rise of 
modern graph theory to 1936. In that year appeared Theorie der Endlichen und 
Unendlichen Graphen, by the Hungarian mathematician Denes Konig [13]. Blanche 
Descartes [6] light-heartedly emphasized this book's significance in a "Hymn for 
Graph Theorists": 

Graph Theory's one foundation 
Is K6nig's famous book. 
It gives an explanation- 
If you will only look- 
Of cycles, nodes and edges 
And graphs complete, called K, 
And how to cross your bridges 
In an Eulerian way. 

3. Basic notation and terminology 

A graph G with n vertices (or nodes) and m edges consists of a vertex set 
V(G) = {v1,.v.. V} and an edge set E(G) = {e, . . ., e1,}, where each ei is a two- 
element subset of V(G). An edge e = {u, v} is usually written uv. Vertices u and v are 
called endpoints of e. A drawing D of G in a plane P represents each vertex as a 
distinct point of P and each edge uv as an open arc containing no vertices, joining u 
to v in P. A crossing in a drawing is an intersection of two edges. In this paper, we 
require that a drawing must satisfy three further conditions: (i) no two edges that 
share an endpoint may cross, (ii) no two edges may cross more than once, and (iii) no 
three edges may cross at a single point. A graph is planar if it has a drawing with no 
crossings. Such a drawing is called a plane drawing of G. The crossing number v(G) 
is the minimum number of crossings among all drawings of G in the plane. An 
optimal drawing has v(G) crossings. 
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A graph's name may suggest its nature. For instance, a path Pn has distinct vertices 
vo, vI) ... . vn such that vi vi is an edge, for i = 0, . . ., n-1. Similarly, an n-cycle C,, 
has distinct vertices vI, . . ., vn such that all vi vi ? are edges, as well as v, VI. The graph 
K,, with n vertices and an edge connecting each pair of vertices is called the comnplete 
graph on n vertices. A graph is bipartite if its vertex set comprises disjoint sets A and 
B, such that eveiy edge has one endpoint in each set. If I A = m and B I = n the 
bipartite graph with inn edges is called complete bipartite and is denoted K)n n 

FIGURE 2 
A subdivisioln of K5. 

In graph theory, as in other areas of mathematics, one derives new structures from 
old. For example, H is a subdivision of G if H can be obtained from G by successive 
operations of the following kind: Delete edge uv and add vertex w along with edges 
uw and wv. We regard G as a subdivision of itself, having performed zero operations 
of the required kind. FIGURE 2 shows a subdivision of K5. For graphs G and C,l, the 
Cartesian product graph G x Cl is obtained by making n copies of G, then joining 
corresponding vertices in a cyclic fashion. A plane drawing of P1 x C4 appears in 
FIGURE 3. This paper concerns C... x C. Since it is isomorphic to Cn X Cm, we shall 
always write Cm X C,, with m < n. 

FIGURE 3 
P1 X C4. 
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4. Useful results and techniques 

In a plane drawing of a graph G a face is any maximal region disjoint from G. For 
planar graphs the number of faces is determined by the number of vertices and edges 
as the following results indicate: 

EULER'S FORMULA: For a plane drawing of a connected graph with n vertices, m 
edges and ffaces, n - m + f = 2. 

EDGE-VERTEX INEQUALITY FOR PLANAR GRAPHS: Any planar graph G with n vertices 
(n ? 3) and m edges satisfies m < 3n - 6. If, also, G has no triangles (3-cycles), then 
m < 2n-4. 

For proofs, see [21]. Applying the edge-vertex inequality to K5, which has five 
vertices and ten edges, we see that K5 is not planar. Similarly, the triangle-free K3 3 
is not planar. These graphs embody the essence of non-planarity in the following 
sense: A theorem of Kuratowski [14] states that G is planar if and only if G contains 
no subdivision of either K5 or K3 ,. 

Many readers are familiar with the "Houses and Utilities" Puzzle, which asks 
whether it is possible to connect three houses each with three utilities without the 
utility lines crossing. If not, what is the least number of crossed utility lines? In the 
language of graph theory, the problem asks: What is v(K3 3)? Since K3 3 is not 
planar, v(K3,3) ? 1. FIGURE 4 shows that v(K3,3) < 1. Thus v(K3,3) = 1. This illus- 
trates a useful technique for proving v(G) = n: Argue that any drawing of G must 
have at least n crossings, then exhibit a drawing of G with n crossings. 

FIGURE 4 

K3,3 with 1 crossing. 

5. Crossing number problems 

In 1970, Erdo's and Guy [8] observed, "Almost all questions that one can ask about 
crossing numbers remain unsolved." Today there are still only a few graphs for which 
crossing numbers have been established. Apart from elementary modifications of 
graphs with known crossing numbers, the only graphs whose crossing numbers are 
large and known are Kn for 3 < n < 10, Km n for 3 < m < 6, C... X CQ for 3 < m < 6, 
and C7 X C7. An interesting introduction to these and other crossing number prob- 
lems is found in [3]. 
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FIGURE 3 shows that v(P1 x C) = 0. Indeed, it is easily seen that v(Pnl X C71) = 0 
for all m and n. However, establishing v(C,, X Cn) is quite a different problem. How 
does one determine v(C1n x C)? Since graphs are finite structures, it seems that 
double induction should be effective. After all, CGm+ X Cn looks much like CM x Cit) 
and induction is often used in graph theory proofs. W. T. Tutte once noted [20]: 
"We ... look at graphs, state... regularities as conjectural theorems, then try to prove 
those theorems for all graphs, even for those soaring out of sight. It works sometimes, 
usually by the grace of the principle of mathematical induction." But this is apparently 
not one of those times. For the values of m for which v(C,n X Cn) is known for all n, 
v(C,i X Cm) was established first. Then v(C..1 x C) was established by induction 
on n. Induction on m has been so reluctant as to be nonexistent. 

6. Early results on v(Cm X Cn) 

In this section we discuss the case m = 3. Here and in the sections to follow, we offer 
proof summaries for some results, to suggest the flavor of the methods used. 

FIGURE 5 
C3 X C3 with 3 crossings. 

In a 1973 paper, Harary, Kainen, and Schwenk [11] used a drawing such as 
FIGURE 5 in their proof that V(C3 X C3) = 3. They then conjectured that an analogous 
drawing of CG1 X C,1 (FIGURE 1) would be optimal. More precisely: 

The ( m, n)-conjecture: For m < n, V(Cm X Cn) = ( m-2)n. 

Not until 1978 was the (3, n)-conjecture verified. In their proof, Ringeisen and 
Beineke [16] used a pattern of three techniques which would be used repeatedly in 
subsequent results on crossing numbers for Cm X Cn. The first technique is edge- 
coloring. The second identifies a situation that causes V(C,n X Cn) to be at least 
(m - 2)n. The third is induction on n. In a crucial lemma, Ringeisen and Beineke 
used the first two techniques. From this lemma, the (3, n)-conjecture follows by an 
easy induction. (A proof summary for the lemma appears after Theorem (3, n).) 

THEOREM (3,3). v(C3 X C3) = 3. 

Proof summary. FIGURE 5 shows that V(C3 X C3) < 3. Since all edges of C3 X C3 
are essentially alike, if V(C3 X C3) were 1, removing an edge of C3 X C3 would result 
in a planar graph. But FIGURE 6 shows that C3 X C3 - {e} contains a subdivision of K5 
and hence cannot be planar. 
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FIGURE 6 
A subdivision of K5 in C3 X C3 -{e}. 

Suppose next that v(C3 X C3) = 2, and that D is an optimal drawing. In D, color 
red the concentric 3-cycles and blue the crossing 3-cycles. Is it possible for two red 
edges to cross? If so, the definition of a drawing implies that the crossing red edges 
must come from distinct triangles. In that case the two red triangles cross twice, 
allowing no further crossings in D. Hence the third red triangle must lie entirely 
inside or outside each of the other red triangles. Since blue triangles connect 
corresponding vertices on all three red triangles, some blue triangle must pass from 
the inside to the outside of the original red triangle, producing a third crossing. Thus 
it is impossible for two red edges to cross. A crossing of two blue edges is similarly 
impossible. 

If V(C3 x C3) = 2, then every crossing involves a red and a blue edge. Call e the 
red edge of one crossing and f the blue edge of the other crossing. Removing e and f 
leaves a plane drawing. Due to symmetry, there are only three possibilities for the 
relative positions of e and f. In two cases, C3 X C3 - {e, f} still contains a subdivision 
of K3,3 as shown in FIGURE 7. This is impossible. For the third case, a result of 
Whitney [22] shows that any plane drawing of C3 X C3 - {e, f} must be essentially 

FIGURE 7 

K3,3 in C3 X C3 - {e,f} 
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FIGURE 8 
A plane drawing of C3 X C3 - {e, f}. 

that of FIGURE 8. But in that figure, e and f cannot be redrawn without producing at 
least three crossings. Thus there is no drawing of C3 X C3 with only two crossings, 
and we conclude that v(C3 X C) = 3. 

LEMMA 1. For n > 4, let D be any drawing of C3 X Cn in which no triangle has an 
edge crossed. Then D has at least n crossings. 

THEOREM (3, n). v(C3 X C) = n. 
Proof: We use Theorem (3,3) as a base case for induction. Assume v(C3 X Ck) = k, 

and suppose there is a drawing of C3 X Ck+1 with fewer than k + 1 crossings. By 
Lemma 1, some triangle has an edge crossed. Removing this triangle gives a draw- 
ing of C3 X Ck with fewer than k crossings, thus contradicting the induction hypothe- 
sis. So every drawing of C3 X Ck?l has at least k + 1 crossings. Since FIGURE 1 shows 
that there is a drawing of C3 X Ck+1 with k + 1 crossings, we conclude that 
v(C3 X Ck+l) = k + 1. This completes the induction. 

Proof summary for Lemma 1. Let D be any drawing of C3 X C,, in which no 
triangle has an edge crossed. Color the 3-cycles red and the n-cycles blue. Define the 
responsibility of a subgraph H of a graph G to be the number of times the edges of 
H are crossed. Thus if one edge of H is crossed by an edge of G not in H, 
it contributes 1 to the responsibility of H, but if two edges of H cross, they con- 
tribute 2. 

Let the subgraphs Hi of C3 X C,, be triangular prisms consisting of two successive 
(red) triangles, Ti on {ai, bi, ci} and Ti + I on {ai + 1, bi + 1, ci + I }, and their connecting 
(blue) edges aiai+, bib+I, cicic+I (see FIGURE 9). Since no edge of a triangle is 

a a+11 

I,i~~~~~~~~~~~+ 

bi bi+1 

FIGURE 9 
The subgraph Hi. 
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crossed, all crossings must involve blue edges. For a given Hi, there are two 
possibilities: Either Hi is planar, or Hi has two edges that cross. In the latter case Hi 
clearly has responsibility of at least 2. In the former the responsibility of Hi is due to 
edges outside Hi crossing edges of Hi. Because no triangle is crossed, Tj+2 must lie in 
one of the quadrangular faces of Hi. Since blue n-cycles connect successive ak (or bk 
or Ck), an examination of cases shows that some blue cycle must cross Hi at least 
twice. Thus Hi has responsibility at least 2. This gives C3 X C, a total responsibility of 
at least 2n. Since each blue edge is in exactly one Hi, D has at least n crossings. 

7. The middle ground 

Beineke and Ringeisen [4] soon went on to verify the (4, n)-conjecture. Using edge 
coloring, a particular situation, and induction, they showed that V(C4 X C) = 2n. 
Their induction used as a base case a result of Eggleton [7] showing that V(C4 X C4) 
= 8. Here we outline a more recent proof, due to Dean and Richter [5]. The 
following lemma aids their argument. 

LEMMA 2. Every optimal drawing of C4 X C4 contains a 4-cycle that is crossed at 
least four times. 

THEOREM (4,4). v(C4 x C4)= 8. 

Proof summary. Suppose that V(C4 X C4) < 8 and that D is an optimal drawing of 
C4 X C4. By Lemma 2, D has a 4-cycle that is crossed at least 4 times. Removing the 
4-cycle leaves a drawing of C3 X C4 with fewer than 4 crossings, contradicting 
Theorem (3, n). Therefore VC4 x C4)= 8. 

Any drawing of C,, X Cn has many 4-cycles. Principal 4-cycles are analogous to the 
3-cycles or n-cycles in C3 X Cn. To verify the (4, n)-conjecture, Beineke and Ringeisen 
adapted their "responsibility" argument of Lemma 1 to prove the lemma below. 
Theorem (4, n) follows by induction and is left to the reader. 

LEMMA 3. If D is a drawing of C4 X Cn in which no principal 4-cycle has more 
than one crossing, then D has at least 2n crossings. 

THEOREM (4, n). v(C4 X C) = 2n. 

8. Recent results 

The most recent results on the (in, n)-conjecture are due to Richter and Thomassen 
[15], Kle'sc, Richter, and Stobert [12], Anderson, Richter, and Rodney [1,2], and 
Salazar [17]. 

In 1995 Richter and Thomassen published proofs of Theorem (4,4) and Theorem 
(5,5) using methods quite different from those we have reviewed so far. They began 
by introducing curve systems. A curve system comprises two families of curves, with 
the property that every curve in one family must intersect every curve in the other. By 
considering conditions of separation, disjointness, and optimality, they determined the 
smallest number of intersections that such curve systems can have. 

Richter and Thomassen view a drawing of Cm, X Cn as a curve system having one 
family of nm-cycles and another family of mn-cycles. Vertices provide the required 
intersections. Essentially, when m = n = 4, they prove that such a curve system has at 
least twenty-four intersections. Since C4 X C4 has sixteen vertices, there remain at 
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least eight crossings. Similarly, Richter and Thomassen show that a system of 
two families of five curves each has at least forty intersections. Thus any drawing 
of C5 x C5 has at least fifteen crossings. This fact and FIGURE 1 verify the (5,5)- 
conjecture. 

THEOREM (5,5). v(C5 x C ) = 15. 

In an undergraduate honors project guided by Richter, Stobert [18] proved the 
following extension. Since it was also proved independently by Kle'sc, the three 
produced a joint paper [12]. 

THEOREM (5, n). v(C5 x Cn) = 3n. 

Proof summary. Kle'sc, Richter, and Stobert employ the now-familiar pattern of. 
proof originated by Ringeisen and Beineke. Using red 5-cycles and blue n-cycles, they 
argue through several cases that if a drawing D of C5 X Cn contains no red 5-cycle 
with more than two crossings, then D must have at least 3n crossings. If there is a 
5-cycle with at least 3 crossings, they apply the induction assumption after deleting the 
5-cycle. 

Anderson, Richter, and Rodney continued the use of curve systems, and verified 
the (6, 6)- and the (7, 7)-conjecture. Salazar extended their results to C6 X Cn. Thus: 

THEOREM (6, n). v(C6 x Cn) = 4n. 

THEOREM (7,7). v(C7 x C7) = 35. 

Salazar also showed that, for an arbitrary integer M, the minimum number of 
crossings in any drawing of Cm X Cn in which no two n-cycles cross more than M 
times approaches (m - 2)n as n approaches infinity. "Thus in some sense," wrote 
Salazar in a letter to the author, "we can say that the [(m, n)-conjecture] is asymptoti- 
cally true." 

9. Conclusion 

One wonders how much hope there is of establishing V(Cm X Cn) in general, given 
the slow progress made since the initial conjecture. As we have seen, for v(Cm1 X Cn), 
the m-values have resisted an inductive argument. What seems missing is some 
general method of relating v(CR1+, X C,,,+1) to v(Cin X Cmn) or to V4C,n X Cin+1). On 
the other hand, it may be that the question of the crossing number of CM1 x Cn is 
simply one that "the wisest [person] cannot answer." 
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Unity in a Field 

I was running through a field, 
On a normal, warm spring day, 
Though it seemed a bit improper, 
I felt free in my own way. 

This independent feeling- 
A direct product of my mind, 
Of which the field's an extension, 
Had a basis I could find. 

The field was not complex. 
Though it seemed a bit unreal. 
I thought it spanned forever. 
But it's finite, I now feel. 

I saw a ring of operators, 
Radicals, no doubt. 
They were planning a group action. 
And quickly closed me out. 

So I formed a group myself. 
My identity sufficed. 
You may think that it was trivial. 
But I thought it was nice. 

Some say it would be ideal, 
Were I to find a friend. 
But here there are just two ideals, 
The Field and me. The End. 

-H. G. GRUNDMAN 

BRYN MAWR COLLEGE 

BRYN MAWR, PA 19010-2899 
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Leibniz's Formula, Cauchy Majorants, 
and Linear Differential Equations 

MICHAEL MEZZINO 
University of Houston-Clear Lake 

Houston, TX 77058 

MARK PINSKY 
Northwestern University 

Evanston, IL 60201 

1. Introduction 

Students of differential equations are familiar with power series solutions of second- 
order linear differential equations with variable coefficients, written 

a(t) y"(t) + b(t) y'(t) + c(t) y(t) =f(t). (1) 
The standard textbook method suggests that one assume the existence of a power 
series solution, substitute this into the equation, rearrange the relevant power series, 
and then equate coefficients of like powers; this yields recurrence relations for the 
power series coefficients. 

We will outline a method, which goes back to Cauchy, augmented by our use of the 
Leibnitz formula for product differentiation. Combining these two ideas provides a 
method that is vastly more efficient-both pedagogically and from the standpoint of 
symbolic algebra manipulations. In particular, one can write down the recurrence 
relation by inspection, without any computations. A complete discussion of this and 
related issues appears in our book [3]. In the final section we briefly discuss the 
history of Cauchy's method. 

2. Essentials of the method 

First we outline the method for the general second-order linear ordinary differential 
equation (1). We assume that the coefficient functions a, b, c, f have convergent 
power series expansions around the base point t = to, and that a(to) A 0. We search 
for a power series solution 

00, 
00 

n=O n=O 
The values of y and its successive derivatives at the base point are given by 

y(t0) = YO = yo, y(to) =Y1 = y1, y"(tO) = 2Y2 = Y2, . . y(n)(to) = n!Yn = Yn, 
and similarly for a, b, c, f. To simplify the formulas below, it is convenient to work 
with the Yn coefficients. Thus we write 

a(t) = an! (t-_to)n, b()=,n (tt-o) n, 
n=O n=O 

oo, m 
fn 

c(t)= Cn 
(t-to)n, and f(t)= J?(t-to)n, 

n=O n=O 
where an = a(n)(to), and similarly for b, c, and f. 
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We also need Leibniz's binomial formula for product differentiation ([8], p. 540) 

( AB) =E (7n) A(k)B(n-k) (2) 

When n = 1 and n = 2 this specializes to the familiar Leibniz rules 

(AB)' = AB' + A'B; (AB)" = AB" + 2 A'B' + A"B. 

If y(t) is a solution of the differential equation (1) with given initial conditions 
y(to) = yo and y'(to) = yl, then substitution in (1) at the base point reveals 

aO y2 + bo Yi + co Yo =fo; (3) 

this gives the coefficient Y2 in terms of {ao, bo, Co, Yo' yi, fl}. Differentiating (1) at 
the base point gives 

(aO y3 + al Y2) + (bo Y2 + b1y1) + (co y1 + cl yo) =fi, (4) 

which can be solved for y3 in terms of Y2 (the solution to equation (3)), and 
{ao, a,, bo, bl, co, cl, yo, yl,fl}. To obtain a general formula for Yn, we apply the 
binomial derivative formula (2) to (1) to obtain, for n = 0, 1,.. 

nn 
a , ( k ak Yn+2-k E ( )(bk Y+l?-k + Ck yn-k ) =fn, (5) 

k=1 = 

where we have isolated the first term involving Yn + 2 
This is the general form of the recurrence relation. We required no re-labeling of 

sums or "index-shifting." It is especially easy to remember if we note the descending 
levels of homogeneity of the indices: the terms involving ak have indices totalling 
n + 2, the terms involving bk have indices totalling n + 1, and the terms involving Ck 

have indices totalling n. 

EXAMPLE. We illustrate with the Airy equation y" - ty = 0 with initial conditions 
y(O) = O and y'(O) = 1. Here we have b(t)-0 and c(t) -t, so bk O, cl I-1 
and Ck = 0 otherwise, and yo = 0, Y, = 1. The recurrence relation (5) gives 

Y2=0 and Yn+2-ny,,-1=0 for n21. 

It follows easily that 0 = Yo = Y2 = Y3 = Y5 = Y6 Y8 Y3n = Y3n+2, and that 
Y4 = 2 y1 = 2; y7 = 5y4 = 5 X 2. In general, 

Y3,+1 = 2 X 5 x .. X (3n-1), 
which gives the required solution 

( ) =tI2t4 lOt7 + + 2 x 5 x . x (3n - l)t3 l 
+ 

y(t)=t+ 4! +7! (3n +1)! 

3. Proof of convergence 

It is not difficult to prove the convergence of the power series solution obtained by 
this method. Cauchy's "method of majorants" [6] works as follows: replace the 
coefficients a(t), b(t), c(t), f(t) by power series for which we can solve the equation, 
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and which serve as suitable upper bounds for these coefficients. Since any power 
series that converges for It - toI < R is dominated by a suitable geometric series, it is 
natural to consider majorants of the form b(t) = ( - (t - to)/R)-' and closely 
related functions. On the other hand, the function Y(t) = (1 - (t - to)/R)-r is easily 
seen to be the solution of a Cauchy-Euler equation of the form 

yff - BY' CY 2 

(I1- (t -to) /R) (1-(t-to)t/R)R =0 

for suitable values of B, C, R, and r. 
Since a(to) 0 0, we have a(t) A 0 in some interval about to, so we can divide 

equation (1) by a(t) and restrict attention to equations of the form 

y" + b(t) y'(t) + c(t) y(t) =f(t). (6) 

The homogeneous equation First we consider the homogenous equation 

y"+b(t)y'+c(t)y=0. (7) 

A further simplification is to replace (t - to)/R by t, which is equivalent to assuming 
that to = 0 and that the functions b(t), c(t) have power series that converge for 
Itl < 1. The problem, then, is to show that the power series solution converges for 
Itl < 1. 

Since the given power series are convergent at t = 1, the coefficients must be 
bounded: 

Ibnl < B ? C, n=0,1,2. 

where B and C are positive numbers. We now consider the related functions 

Bb 
- EBt = Ef jtn 110 

n=O 
and 

c c 

(1 2 = 2C(n + ?)tn= E Cntn 
( -t) n=O n=O 

where 

IbnI<Bn!=bn and Icn|<C(n+1)!=5E. (8) 

We now consider the initial-value problem for the Cauchy-Euler equation 

y ~ B C 
Y"(t) - 1-Y'(t) - ( )Y(t) = 0, Y(to) =h0 YI(t0) =Y 

As mentioned above, a trial solution is sought in the form ( - t)r. Since this 
equation is linear and homogeneous it is natural to look for the general solution in the 
form 

Y(t) = a1l(1-t) -r + a2(0 - 
t)n-r9 = E () 
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where a 1, a2 are constants and r, and r2 are the roots of the quadratic equation 
r(r + 1)-Br-C = 0. This quadratic has two real roots r, < 0 < r2, where 

2rl 2 =(B-1) ? ( B-)2 +4G. 

Using the initial conditions Y(O) = - and Y'(0) = 7', we can solve for al, a2 to 
obtain the required solution Y(t). 

From the recurrence relation of equation (5), we must have 

n 

Yn+2 k = O(b)() n =0, 1, 2, (10) Y _o 2 k) k Yn+l-kc + CkYn-k)=? n=Ol2(l) 

This shows the important fact that if -0 ? 0 and -1 ? 0, then -n ? 0 for all n. 
To obtain two linearly independent solutions of (7), we first take (yo, yI) = (1, 0), 

then (yo, yl) = (0, 1); in each case we use the same values for (yO, ). We propose to 
show that I yn I ?< for all n. This is clearly satisfied for n = 0, 1 by definition. 
Assuming that the inequality holds for the indices 2,..., n + 1, we conclude from (5), 
(8), (10) that 

n IYn]+2 I: 
n 
( k)bk Yn+l-k + Ck Yti-k)l 

YnE+2k kYn+1-k +CkYn-k) 

Yn1+2 

Thus the coefficients Yn are majorized by the coefficients of a convergent power 
series, so the series Eyn tn/n! is convergent, as desired. 

The inhomogeneous equation To complete the proof, it suffices to find a particu- 
lar solution to the inhomogeneous equation, since the general solution of (6) is the 
sum of a particular solution together with the general solution of the homogeneous 
equation (7), just constructed. 

Again, we relocate the origin and rescale so that to = 0 and the power series for 
b(t), c(t), and f(t) converge for Itl < 1. In particular, all the coefficients must be 
bounded at t = 1: 

Ibnl < B IcEl <C Ifnl < F, 
n! ?B n ?C n! - 

for positive constants B, C, and F. Now examine the polynomial 

p(r) = r(r + 1) -Br-C. 

Let r = ((B-1) + (B1)2+4(C + F) )/2; note that r > 0 and p(r) =F. 
Hence we have the bounds 

F(n +r + 1)! 
bn I < Bn! =Ln) C, Icl < C( n + l)!= ci) [ fn I < ((+ 1) ' ! 

Now consider the function 
00 _ Y(t) = (1-t) -r = E Y!tn. 

n=O 
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Direct computation shows that Y(t) satisfies the equation 

y//_ n Y'(t) - )Y(t)_ -2r-2 =E nt 

Hence the Taylor coefficients satisfy 

?<Yt +2 E (j k )Vk n? k+a -k )+)fn 

We obtain a particular solution by taking yo = 1 =o and y, = r= Y and define 
the higher Taylor coefficients by solving the recurrence relation (5). The Taylor 
coefficients Yn of the majorant are all non-negative; we propose to show by induction 
that l ynI < Yn for all n. This is true for n = 0,1 by definition; assuming the truth for 
Y2, Yn+l, wehave 

IYn+2 <In +|E(k )(bk Yn+l-k + Ck Yn-k)| Iy~?I?I~I~k=O(k 
n 

<f? + kkYn ( l) (bkYnl-k +CkYn-k) 

Yn+2 

this completes the proof. We have found a particular power series solution of the 
differential equation (6). 

4. Extension to Nth-order equations 

To extend the previous method to general N -order equations, we first introduce a 
convenient notation. The general Nth_order linear differential equation is written 

pN(t) y( (t) +PN _l(t) Y(N)(t) + . +p0(t)y(t) =f(t)' (11) 

where PN(tO) = 0. If we define 

P ( PN(t) PN-l(t)* po(t)) 

y ( y(N)(t) Y(N-1) (t),. y(t)), 

then equation (11) can be written 

P * Y=f(t). (12) 

Again, the general form of the nth_order recurrence relation requires that we 
repeatedly differentiate equation (12) at the base point. Note that 

(PY)'=PY'+P'-Y and 

(P Y) =P Y" + 2P' Y'+ P" Y. 

More generally, Leibniz's binomial derivative formula gives 

(P. y)(n) = 
n ( p p(k) . y(n-k) 
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This formula is identical to the original Leibniz formula for product differentiation 
where ordinary multiplication is replaced by the dot product. 

If f(t) and P(t) have power series expansions around the base point t = to, then we 
may write 

00 00 

f(t)= E fn!(t-to) and Pk(t)k= 
n 

)(t-to)k for k=O,1,...,N, 
n = 0 11=0 

and search for a power series solution of the form 
00 

y(t) = (t 
n=O 

If y(t) is a solution to equation (11) with initial conditions y(tO) = yo' y'(tO) = 
Y ., y (N- )(tO) = YN-1, substitution into equation (11) at the base point yields 

(P * Y =f(t)) Itto => P(N,O) YN + P(N-1, 0) YN-1 + +P(o ) Yo =fo - 

This can be solved for YN in terms of { P(N, 0)' P(N- 1, 0). . p(o, 0)' fo} and the initial 
conditions { YN- 1, YN-2, . . - YO}. This is precisely the extension of equation (3) to the 
Nth-order equation. If we differentiate equation (12) n times and apply the binomial 
formula, we obtain 

((p .y() =f n(t)) It to 
n 

( Pk ) k n-k =fn '(13) 

We may also rewrite equation (13) by isolating the only term involving Yn+N? and 
then solving for Ynl+N to obtain the desired solution. This yields a form that extends 
equation (5) to the Nth-order case: for n = 0,1,. ... 

P(N,O)Yn+N + E P(N-k,O)Yn+N-k + n 
k n-k =fn (14) 

5. Extension to singular equations 

The methods discussed above are easy to extend to second-order equations with a 
regular singular point, such as the Bessel equation. 

Reformulation of the method The most general second-order homogeneous 
equation with a regular singular point at t = to is written 

(t - to)2 y" + (t - to) p(t) y' + q(t) y = 0, 

where p(t) and q(t) are assumed to have power series expansions 
00 00 

p(t) 
= E Pn (t -to)", q(t) 

= n! (t-_to)n, 
n=O i1=I 

which are convergent in some interval It -to I < R. 
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From the work of Frobenius ([1], Chapter 4), it is known that there exists a power 
series solution, of the form 

00 

y(t) =It_ to Ir E Yn! (t _to) n, ynn 
n =O 

where r is the larger root of the indicial equation 

r(r- 1) +por+qo=0. 

As in the previous discussion, it is no loss of generality to take to = 0 in what follows. 
In the subsequent treatment we illustrate Cauchy's method in case the larger root is 
r = 0. The reduction from the general case to this case is carried out in complete 
detail in our book ([3], Chapter 21). 

Since r = 0 is the larger root, we must have 

qo= 0, Po1. 

To find the coefficients y, we apply the product rule to each term in the equation: 

[t2yUi](n) t=o= (t2y(n+2) + 2nty(nU+) + n(n - 1) y(tl))l=o = n(n - 1) yt, 

n [tp(t) y" ̀fl)t=O = n7 ()kPkl- Un?l-k 

k = i 

[q(t) u](?)L=o - (n )qkYUn-k 

(We used the easily-proved fact that [tp(t)](k)It=o = kpkl.) This yields the recurrence 
relation in the form 

n(n-1)yJ+ nL ()kPk-IYl?+-k+ n($)qkYn-k =. (15) 

In particular, for n = 1, 2, 3: 

PoYi +qjyo =0, 

(2 + 2po) Y2 + (2p, + 2qj) y1 + q2 Yo = , 

(6 + 3po) y3 + (6pi + 3q1) Y2 + (3P2 + 3q2) YI + q3Yo = 0. 

We note that, in contrast with the power series solution about an ordinary point, the 
sum of the indices in each term in the recurrence relation is constant. We note also 
that the higher coefficients are uniquely determined by yo; indeed, since po ? 1, we 
see that the coefficient of yU? is n(n - 1) + npO ? n2 # 0 for n ? 1. 

EXAMPLE. We illustrate by finding a power series solution of Bessel's equation of 
order zero: t2Uy + ty' + t2y = 0. Here p(t) = 1 and q(t) = t2, So Po = 1, q2 = 2 and 
all other coefficients are zero. The recurrence relation for yUl reduces to yU = 0 and, 
for n > 2, 

n2 y 
+n(n-1)Yn2 =0. 
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Thus y,n = 0 for odd n; for even n we have 

-2r (2m -1) -3 -1 (1 r (2m)! 
2m 4 2 [2"nM!]2YOr 

which gives the well-known power series for jo(t) when yo = 1. 

Proof of convergence Convergence can be proved directly, beginning with 
equation (15). We assume that R = 1 so that the coefficients are bounded by a 
constant A > 1: 

Pk < <A qk <A, k=0,1,2.... 

We set Yk = yk/k!, so that from equation (15) we have 

n21 Yn I < (n(n I- ) + npI) Yn I < n! A I 
| l-k) + A EI Ynkv 

k=i k=i 

Dividing both sides by n2n! results in the inequality 

2 A nEIkI 
lyn~~~ 

I 
0 

T1 lk1 
k=o 

We have Yo = 1 and Y=q I lp < A. We show by mathematical induction that 
for all k, 

IYkI<Aka where a=2A-1. 

Indeed, this is true for k = 1; assuming the truth for k = 1,. . . 1, n- we have 

2 A n-I 2 A n-i 2A Ana?l 
IYn J?<- E IYkI? | n EAka <Ana. 

nk=o n k=o 
n a+1 

Therefore, the power series EYnyntn converges for ItI < 1, which was to be proved. 

6. Historical notes 

Cauchy's original paper was published on July 4, 1842, under the title Memoire sur 
l'emploi du nouveau calcul, appelle 'calcul des limites' dans l'inte'gration des equations 
differentielles [4]. In this work it is first noted that any single N th-order differential 
equation, in general non-linear, can be written as a system of first-order equations. 
Then it is shown that if all of the defining functions are analytic in the neighborhood 
of the base point, the system may be differentiated successively at the base point to 
find the Taylor coefficients of the unknown solution. The 'calcul des limites' refers to 
finding a suitable majorant equation in order to prove convergence of the resultant 
power series. 

Cauchy's method was well exposited in textbooks in the earlier part of the twentieth 
century, especially in the very popular book of Goursat [7]. The method seems to have 
been largely forgotten in the post-war period, with the exception of [2]. For the 
specific case of second-order linear equations, the recurrence formula is derived in 
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[5]. More recently Strichartz [6] gave this derivation together with the explicit 
construction of majorants for linear second-order equations, as we have done. None of 
these works uses the streamlined formulation possible with the binomial formula. 

Acknowledgment. We would like to thank the referee for several helpful comments, and to thank the 
editor for a careful reading which led to many useful suggestions for an improved exposition. 
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 Will the Real Non-Euclidean Parabola
 Please Stand Up?

 MICHAEL HENLE
 Oberlin College

 Oberlin, OH 44074

 The parabola has two outstanding geometric properties: the locus property (it is the
 locus of points equidistant from a point and a line) and the reflecting property (it
 reflects parallel lines to a single point). While the locus property is usually considered
 the defining property of the parabola, the reflecting property also distinguishes
 parabolas among all other plane curves, and hence could be taken as its definition in
 the Euclidean plane.

 Surprisingly, however, the curves satisfying these properties in the hyperbolic
 (Lobachevskian) plane are different. This raises the question: What is the real
 non-Euclidean parabola: the curve satisfying the locus property, or the curve satisfying
 the reflecting property?

 The purpose of this note is to derive equations for both these curves, and address
 this question. This extends the discussion of non-Euclidean parabolas begun by Ron
 Perline [2]. Perline used Poincare's half-plane model. Our treatment uses homoge-
 neous coordinates.

 Homogeneous coordinates A point P in the hyperbolic plane has three homoge-

 neous, real coordinates = , z) (1)

 where Z2 _X2 _Y2 > 0 and we usually assume also z > 0. These points are in the
 interior of a cone in three-dimensional Euclidean space, the cone, W, with equation
 Z2 _ x2 _ y2 = 0 (see FIGURE 1). As usual with homogeneous coordinates, any non-zero
 scalar multiple of the coordinates (1) represents the same point in the hyperbolic
 plane, i.e., P also has coordinates (kx, ky, kz) for any k 0 0. When we need unique
 coordinates for P, we normalize by choosing k = (Z2 - - y2) -1/2 which puts P on
 the upper sheet of the hyperboloid of two sheets, X, with equation: z2 _ X2 _ y2 = 1.

 Let us call X the hyperboloid model. This is the model of hyperbolic geometry
 that is closely linked to the theory of relativity. The hyperboloid X is the "unit
 sphere" of three-dimensional Minkowski space. In turn, A is connected with the disk
 model by stereographic projection.

 These concepts are depicted in FIGURE 1. The cone, ', is a wire frame; the
 hyperboloid, X, is gray. The thick line, determined by the point P and the origin,
 represents a single point in the hyperbolic plane. The normalized representative of
 this point is the point P. Stereographic projection from the point S with Cartesian
 coordinates (0, 0, - 1), is depicted by a thin line, and maps P, on the hyperboloid,
 to Q, inside the unit disk in the (x, y)-plane.

 Straight lines Although less familiar than the disk and half-plane models of
 hyperbolic geometry, the hyperboloid model possesses a number of advantages. In the

 369
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 3i

 FIGURE 1

 The hyperboloid model of hyperbolic geometry.

 first place, the equation of a straight line is linear. If the coefficients a, b, c satisfy
 -2 a 2- b2 < 0 (and we usually assume c > 0 also), then the set of solutions (1) of

 the equation
 ax +by +cz =0 (2)

 is a straight line in the hyperbolic plane. We take L = [a, b, c]I as homogeneous line
 coordinates. As with point coordinates, any non-zero scalar multiple [ka, kb, kc]
 also serves as coordinates for L. When we need unique coordinates, we choose
 k = (a 2+ b 2 - C2) 1/2 . Regarded as a vector with its tail at the origin, the normalized
 L has its head on the hyperboloid of one sheet with equation: z 2 _-2_ - = ,
 which we call X* Normalized or not, the vector L is normal (i.e., perpendicular) to a
 plane through the origin whose intersection with Y is the hyperbolic straight line of
 equation (2).

 All this can be observed in FIGURE 2. The wire frame is the hyperboloid of one sheet
 X*; the hyperboloid of two sheets, X, is still gray. The vector L determines a

 FIGURE 2

 A straight line in the hyperbolic plane.
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 hyperbolic straight line, depicted as a thick curve on X The stereographic projection

 of this line is the thick curve in the (x, y)-plane: a circular arc perpendicular to the
 unit circle.

 Mensuration formulae We now list the elegant formulae used to calculate dis-

 tances and angles in homogeneous coordinates. Let P = (x1, Yi, Z1) and Q =
 (x,, Y2, z2) be two points. We need two scalar products: the usual dot product

 p * Q = X1x2 + Y1 Y2 + Z1Z2

 and the Minkowski product

 (P, Q) = Z1 Z2 -X1 X2- YIY2,

 plus the norm

 (A) Given two points: P = (x1, yl, z1) and Q = (x2, Y2, z2), the line L determined
 by P and Q has homogeneous coordinates

 L=PX Q= [Y1Z2-Y2Z1, -x1z2 +x2z1, x1Y2-x2Y1] (3)

 and the distance, d(P, Q), from P to Q is

 d(P,Q) =arccosh( | Q ) (4)

 (B) Given a point and a line: P = (x, y, z) and L = [a, b, c], the perpendicular from
 P to L is the line, M, with coordinates

 M = [cy + bz, - (az + cx), ay - bx] (5)

 and the distance from P to L is

 d(P, L) = arcsinh P ). (6)

 (C) Given two lines: L = [a1, b1, c1] and M = [a2, b2, c2], let

 k (L, M)

 Then L and M intersect, are parallel, or are hyperparallel according as k < 1, k = 1,
 or k > 1. If L and M intersect, the point of intersection is P = L X M, and the angle
 of intersection is

 0 = arccos ( k )=arccos ( JL Ml ) (7)

 If L and M are hyperparallel, then their unique common perpendicular, called the
 axis of L and M, is the line with coordinates

 K = [-b1c2 + b2c1, a1c2 - a2c1, a1b2- a2b1] (8)

 while the shortest distance between L and M is s = arccosh(k).
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 These formulas are derived in Coxeter [1]. We won't need all of them (but to leave
 even one out spoils their elegance as a group). Note that (5) and (8) are not cross
 products (but do have some cross product-like properties). Finally, although we use
 homogeneous coordinates for calculation, we draw figures in the disk model (where
 straight lines are arcs of circles perpendicular to the unit circle) because this gives
 such a good overall view of the hyperbolic plane.

 The locus property Armed with these formulas, let's find the equation of the curve
 in the hyperbolic plane that is the locus of points equidistant from a given point F and
 line L. For convenience we put F on the x-axis a unit distance from the origin. The
 line L we also place a unit distance from the origin, perpendicular to the x-axis. (See
 FIGURE 3.) The result is that the origin, being equidistant from F and L, is on the
 locus, in fact, is the vertex of our "parabola."

 y

 P=(X, Y, Z)

 F=(-stO,c) (se) - x

 S .e \~~~~L - 0C, 0 ]o

 FIGURE 3

 Points P such that d1 = d2 form a parabolic locus.

 We need coordinates for F and L. Since the x-axis has coordinates [0, 1,0] (its
 equation is y = 0), F has coordinates (x, 0, z) for some x and z which we assume, for
 simplicity, are chosen so that F is normalized: Z2 _- 2 = 1. The distance from F to the
 origin (0, 0, 1) is 1, so the distance formula (4) gives z = cosh (1). Therefore,
 x = - sinh (1) and F has coordinates (- s,0, c) where s = sinh (1) and c = cosh (1).
 Next, since L is the perpendicular to the x-axis at the point (s, 0, c), the point
 symmetric to F on the other side of the origin, L = [-c, 0, s ] by formula (5).

 Let P = (X, Y, Z) represent any point on the locus. We assume that P is normal-
 ized. Then d =arccosh (IKP, F) I) according to formula (4). On the other hand,
 d2= arcsinh(IP LI) by formula (6). Setting these equal,

 IcZ+sXI = 1+(sZ-cX)2 (9)

 and solving together with the normalization condition: Z2 _ X2 _ y2 = 1, gives the
 equation

 Y2=-4csXZ, (10)
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 1

 F \

 FIGURE 4

 The locus of points equidistant from F and L.

 whose graph, in the disk model of the hyperbolic plane, is given in FIGURE 4. Equation

 (10) is preferable to equation (9) not only because it is simpler, but because, being
 homogeneous, it is satisfied by all coordinates of points on the locus, not just
 normalized coordinates.

 FIGURE 4 looks quite like a Euclidean parabola, although perhaps a bit too bent at
 the "vertex." Equation (10) is also very like the equation of the Euclidean parabola
 under analogous circumstances: y2= - 4x. We return later to the question of the
 genuineness of this parabola.

 U

 FIGURE 5

 The reflecting property in the hyperbolic plane.
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 The reflecting property We turn to the parabolic reflector: a curve that reflects
 parallel rays (coming from a given ideal point) to a given ordinary point. We place the
 source of the light rays, S, on the negative x-axis and the focus, F, at the origin. Our
 goal is to find the equation of the "parabola" passing through the point V = (s, 0, c)
 on the positive x-axis. (See FIGURE 5.)

 Let P = (X, Y, Z) represent an arbitrary point on the reflector. We need homoge-
 neous coordinates for the tangent line to the curve at P. Therefore, let P1 be a second
 point on the curve, and consider the secant joining P and P1 whose homogeneous
 coordinates, according to formula (3), are

 i j k i j k

 P1XP= X1 Y1 Z1 = X1-X Y1-Y Z1 -Z.

 x y z x y z

 Taking the limit as P1 approaches P, we get T = P' X P where P' = (X', Y', Z').

 iy
 1

 L X T

 LI ~ ~ ~ ~ l
 S F V1 ^

 FIGURE 6

 Points P such that a = 8 form a parabolic reflector.

 The defining condition of the reflector is that the angles a~ and 13 in FIGURE 6 are

 equal. Formula (7) can be used to find these angles. For this purpose, let L, be the
 ray from S to P, and let L2 be the line from F to P. Then

 (LI) T) KL2) T)
 cos (a) = IIL1IIIITII, and cos ( 83 =IL2 IIIi1TI

 where L = S xP = [-Y, X +Z, - Y]and L2 = F X P =[Y, X, 0]. Using the eas-
 ily verified formula

 (A XB, CXD)- KA, C) (B, D)
 iA,D) B, C)

 we get

 KL 1,T) = S X P, P' X P) =S KsP')K(P, P) - KS, P)(P, P')
 and

 KL2, T) = F X P, P' X P) =(F, P')(P, P) - (F, P)(P, P).
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 We now assume that P is normalized, so that KP, P) = 1. By differentiation, it follows

 additionally that KP, P') =0, so now (L1, T) = KS, P') =Z' + X' and KL2,T) =
 KF, P') = Z'. Thus,

 Z' + X' 1

 cos (a)= Z+X 11TI
 and

 COS(13) = | 11T= I Zf T
 Setting these equal, we get the differential equation

 + Z+X Zf

 - Z+X 2_

 which integrates to

 +ln I X + ZI = ln Z+ FZ2 _ 1 + C.

 The plus sign leads to a degenerate solution, but the negative sign, combined with the
 normalization condition (Z2 -X2 -y2 = 1) and initial conditions (XO = s ,Yo = 0,
 ZO = c), yields the homogeneous equation

 Y2-= 4 2 (X+Z)(CZ-SX)
 (s +c)2

 whose graph, in the disk model of the hyperbolic plane, is depicted in FIGURE 7.

 What is the real hyperbolic parabola? There is no definitive answer to this
 question. Certainly both the curves derived above have important geometric proper-
 ties characteristic of Euclidean parabolas. Both curves also have quadratic equations.
 Which do you prefer?

 s F v~~~~~~~~~s

 FIGURE 7

 A parabolic reflector in the hyperbolic planie.
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 My own inclination is to regard the curve in Figure 7 as more genuinely parabolic
 than the one in Figure 4 because it tends, in the limit, to a single ideal point while the
 curve in FIGURE 4, like a Euclidean hyperbola, tends to two ideal points.

 REFERENCES

 1. H. S. M. Coxeter, Non-Eucliclean Geometry, 5th Edition (1965), Univ. of Toronto Press.
 2. Ron Perline, Non-Euclidean flashlights, Aner. Math. Monthly, 103 (1996), 377-385.

 Math Bite:
 The Volume of a Cone, Without Calculus or Square Roots

 The volume V of a cone is a third the base A times the height H. M. Hirschhorn [1]

 obtains this relationship, and from it the volume and surface of a sphere, without
 calculus but with many square roots. Here we eliminate the square roots, and
 moreover obtain 3V = AH for any cone whose base is dissectable into squares whose

 total area, summed as a convergent series, is that of the base. (For example, a circular
 base of unit area admits such a dissection, but not when riddled with a series of holes
 of area 1/4, 1/8, 1/16,... centered on an enumeration of its rational points.) Such a
 dissection induces a dissection of the cone into pyramids, whence to prove 3V = AH
 for such a cone it suffices to do so for a pyramid.

 Any pyramid of nonzero volume can be transformed into any other by an affinity, a
 linear transformation composed with a translation. Affinities preserve the ratio of

 volume to base-times-height, whence it suffices to demonstrate 3V = AH for a single
 pyramid. The pyramid formed by the center and one face of the unit cube does the
 job, having V = 1/6 by symmetry, H = 1/2, and A = 1.

 The surface area of a sphere Hirschhorn uses the volume of the cone to derive
 the relationship 3V = RS between the volume V and surface area S of a sphere of
 radius R (easy), and also to derive the formula for V itself in terms of R (harder),
 thereby obtaining S.

 An alternative to the harder step is to obtain S first and apply 3V = RS to get V.

 For S, observe that a cylinder of radius R containing the sphere, and truncated at

 each end where the sphere ends (the same cylinder Hirschhorn uses to obtain V), has
 area the perimeter 21rR times the length 2 R, namely 47R2. We show that the sphere
 has the same area.

 Orienting the axis of the cylinder vertically, pair up points on the two surfaces via
 perpendiculars to the axis. This pairs up very small rectangles on the cylinder with
 very small rectangles on the sphere. Any such rectangle P on the cylinder is wider

 than its counterpart Q on the sphere in the ratio R/r where r is the distance of Q
 from the axis. But Q is taller than P by the same ratio because the tilt of Q from the
 vertical equals the tilt of the radius OQ (0 the center of the sphere) from the
 horizontal. So the paired rectangles have the same area, whence so do the whole
 surfaces.

 REFERENCE

 1. M. Hirschhorn, The volume of a cone, without calculus, this MAGAZINE 70 (1997), 295-296.

 -VAUGHAN PRATT

 STANFORD UNIVERSITY

 STANFORD, CA 94305-9045
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Proof Without Words: 
The Length of a Polygonal Arch 

The length of the polygonal arch generated by one vertex of a regular n-gon rolling 
along a straight line is four times the length of the inradius plus four times the length 
of the circumradius of the n-gon. 
If n is even... 

e e 

b b 

If n is odd... 

2d. _. 2d 

2d 

b- 

-PHILIP MALLINSON 

PHILLIPS EXETER ACADEMY 

EXETER, NH 03833-2460 
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 The Incredibly Knotty

 Checkerboard Challenge

 LOUIS ZULLI
 Union College

 Schenectady, NY 12308-31 66

 Introduction This note is about an easily-stated puzzle that arose in an interesting
 way. The puzzle involves certain patterns of coins on an ordinary checkerboard, but it
 was suggested by a theorem in diagrammatic knot theory! We begin by presenting the
 checkerboard puzzle. After we analyze the puzzle mathematically, we discuss the
 somewhat surprising connection between patterns of coins on a checkerboard and
 knots, which are simple, closed curves in space.

 A standard checkerboard consists of sixty-four squares, arranged in eight rows and
 eight columns. If we focus on the corners of squares, then a checkerboard provides
 eighty-one vertices, arranged in a 9 X 9 grid.

 By placing coins at some of these vertices, form any pattern that satisfies these
 conditions:

 1. No coin lies at a vertex on the main diagonal of the board. (The main diagonal runs
 from upper-left to lower-right.)

 2. The pattern is symmetric with respect to reflection across the main diagonal.

 There are thus 236 admissible patterns; see FIGURE 1 for an example.
 Here is the challenge: By completely covering eight or fewer columns of vertices on

 the checkerboard, leave an even number-zero is allowed-of coins visible in each
 row.

 For example, if we cover columns 2 and 8 in FIGURE 1, we obtain the pattern shown
 in FIGURE 2. Because an odd number of coins remain visible in each of four rows, this

 1 2 3 4 5 6 7 8 9
 1 v , -- -

 2 - --

 v~~~~~~I v , Id ,v,

 3 - - P- - m

 4 -

 5 - -P-

 6 0- - - -A- -

 FIGURE 1

 An admissible pattern.
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 1 2 3 4 5 6 7 8 9

 2 - -

 4 - _ _

 5 - - - PI

 6 - - --

 7 - -P_I

 9

 FIGURE 2

 Covering columns.

 is not a solution to the challenge. To solve the puzzle, we must cover columns to leave
 an even number of coins visible in each row.

 In fact, there is a unique solution to the challenge for the pattern shown in
 FIGURE 1. We urge the reader to seek this solution! As a few minutes spent searching
 will confirm, finding the solution to this puzzle by "trial and error" is difficult, so
 there is something to be gained by confronting the challenge systematically. The
 primary aim of this note is to provide a systematic method for tackling these
 checkerboard puzzles.

 Although we have begun by presenting a specific example, we shall show that not
 only does a solution exist for the pattern depicted in FIGURE 1, but that a solution exists
 for each admissible pattern of coins. Specifically, we shall prove:

 THEOREM (Existence of Solutions). Let n be an odd number. On an n x n grid,
 consider any pattern of coins that satisfies conditions (1) and (2) above. Then it is
 possible to coverj columns, where 0 <j < n - 1, to leave an even number of coins
 visible in each row.

 Notice we are not claiming each admissible pattern admits just one solution.
 Indeed, it is not difficult to find patterns of coins that admit multiple solutions. Also,
 according to the theorem, we don't need to confine ourselves to a standard checker-
 board when we present this challenge. All we require is a square grid composed of an
 odd number of vertices.

 In addition to proving the existence theorem stated above, we shall provide an
 algorithm for finding the solution or solutions whose existence the theorem guaran-
 tees. Actually, once the puzzle has been reformulated properly, it probably will be
 obvious to all which algorithm solves it. So a main goal of this note is to reformulate
 the checkerboard challenge to make it more amenable to mathematical investigation.
 Once this has been done, it will be rather easy to prove the existence theorem stated
 above, and to solve any given puzzle using a simple and well-understood algorithm.

 Reformulating the challenge As perhaps the reader has discovered, when columns
 2, 6, and 7 are covered in FIGURE 1, an even number of coins remain visible in each
 row. Let us use this solution to reformulate the challenge and make the puzzle much
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 easier to analyze. The first step is an obvious one-use a 9 X 9 matrix to represent the
 pattern of coins on the checkerboard. With 1 representing a coin and 0 denoting an
 empty vertex, the pattern in FIGURE 1 corresponds to the matrix

 0 1 0 1 0 1 1 0 1

 1 0 1 0 1 1 0 1 0

 0 1 0 1 0 1 0 1 0

 1 0 1 0 1 0 1 1 0
 A= 0 1 0 1 0 1 0 0 1

 I I I 0 1 0 0 1 0

 1 0 0 1 0 0 0 1 1

 0 1 1 1 0 1 1 0 0

 I 0 0 0 1 0 1 0 0

 With Aj denoting the jth column vector of A, we see that the solution given above
 is a solution precisely because

 2

 4
 2

 4

 Al +A3+A4+A5+A8+A9= 2
 4

 4

 2

 2

 or, equivalently, because

 1 2

 0 4

 1 2

 1 4

 A 1 = 2
 0 4

 0 4

 1 2

 1 -2

 Of course, all that matters here is that the vector on the right-hand side of the
 equation contains even numbers only. Because of this, it is natural to abandon the real
 number system, and use instead the field Z/2Z. This field has only two elements,
 0 and 1, which correspond to even and odd. In //2Z, the matrix equation above
 becomes

 1 0

 0 0

 1 0

 1 0

 0 0

 0 0

 1 0

 1 0
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 Now it should be clear that the checkerboard challenge corresponds to a standard
 problem in linear algebra! Indeed, finding the set of solutions for a given admissible

 pattern is equivalent to finding the nullspace of the matrix that represents the pattern,
 The only twist is that we must view the matrix as a matrix over Z/2Z, and we must
 view the solution vectors as elements of (7/27)9 rather than R'. In theory, this
 change of fields matters little-we can find the solutions that correspond to a given
 pattern of coins by converting the matrix to row-echelon form and solving the
 associated homogeneous system of linear equations. In practice, using the two-
 element field makes computation quite easy, since row reduction of matrices over
 7/27 is especially simple.

 To illustrate, consider the matrix A that corresponds to the pattern of coins from
 FIGURE 1. Row reduction of that matrix over 7/22 yields the matrix

 1 0 1 0 1 1 0 1 0

 0 1 0 1 0 1 1 0 1

 O 0 1 1 1 1 0 0 1

 0 O 0 1 0 0 1 0 1
 B= 0 0 0 0 1 1 1 0 1

 0 0 0 O 0 1 1 0 0

 0 0 0 0 O 0 1 1 1

 0 0 0 0 0 O 0 1 1
 0 0 0 0 0 0 0 0 0

 Since only the ninth column lacks a pivot, the nullspace of B is one-dimensional. So
 besides the zero vector, which doesn't correspond to a valid solution to the puzzle,
 there is a single vector X in the nullspace of B. By solving the associated homoge-

 neous system of linear equations, we find the components of X are X2 =X6 =X7 = 0
 and xI =X3 =X4 =X5 =X8 =X9 =1. So we have recovered algebraically what we
 already knew-to solve the puzzle for the pattern of coins in FIGURE 1, we must cover
 columns 2, 6, and 7. Also, we have justified our assertion that this is the only solution
 to the puzzle for that pattern of coins.

 Existence of solutions In this section, we prove the existence theorem stated in the
 Introduction. Actually, we prove the following reformulation of that theorem:

 THEOREM (Existence of Solutions). Let n be an odd number. Over the field Z/22,
 consider any n X n matrix that has the following properties:

 1. Each element on the main diagonal of the matrix is 0.
 2. The matrix is symmetric.

 Then there exists a non-zero vector in the nullspace of the matrix.

 (A note on terminology: Henceforth, we will call an n x n matrix over Z/2Z that
 satisfies 1) and 2) an alternating matrix, regardless of the parity of n. This usage is
 standard, and is appropriate since each such matrix represents an alternating bilinear
 form on (Z/2Z)n. We will call an odd-dimensional alternating matrix a checkerboard
 matrix. With this terminology, our theorem becomes "a checkerboard matrix has a
 non-trivial nullspace.")

 Before we prove the theorem, two comments: First, n mnust be an odd number.
 Otherwise we can easily find alternating matrices that have trivial nullspaces. Indeed,
 for each even number n, the matrix that has ones immediately above and below the
 main diagonal and zeros elsewhere is such a matrix. Second, the theorem says nothing
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 about uniqueness of solutions. In general, solutions are not unique, but they do form a
 subspace of (Z/2Z)n.

 Now let us prove the theorem. With our reformulation, the proof is rather easy.

 Proof. Let A be an n x n checkerboard matrix. It suffices to show that det(A) = 0

 in Z/2Z. Recall that det( A) is a certain alternating sum of products of elements of A
 (or see p. 514 in [3]). In Z/2Z, - 1 = + 1, so this alternating sum becomes an
 ordinary sum. Call a configuration of n locations in A a transversal if each row and
 each column of A is represented just once by the locations that comprise the
 configuration. There are thus n! transversals, and each gives rise to a summand in

 det( A). Specifically, each transversal contributes to det( A) the product of the
 elements that occupy the locations that comprise the transversal. We must demon-

 strate that the sum of these n! contributions is zero in Z/2Z.
 To see this sum is zero, note that any transversal that contains at least one location

 on the main diagonal contributes nothing, since each element on the diagonal of A is
 zero. Those transversals that do not intersect the main diagonal occur in pairs-each
 such transversal has a "mirror image" obtained by reflection across the main diagonal.
 (Because n is odd, no such transversal is its own mirror image.) Since A is symmetric,
 each such transversal and its mirror image make the same contribution; since we are

 working in Z/2Z, the combined contribution of the paired transversals is zero. Thus
 det( A) = 0.

 A connection to knot theory In this section, we describe the path we followed
 from knot theory to the checkerboard challenge. The account here is self-contained,

 but for more about knot theory, see [1], [2], or [4].
 As above, we use an example to focus our discussion. A diagram for the knot 916 is

 shown in FIGURE 3. This is a positive knot diagram, which means each crossing in the
 diagram is a positive crossing according to the conventions of knot theory. (See p. 152
 of [1] for a discussion of crossing signs.) We have assigned a number to each crossing;
 this has been done in an arbitrary manner, and simply for reference.

 To this labeled knot diagram, we assign a 9 X 9 matrix A over Z/2Z, as follows:
 Let aii = 0 for i = 1, 2,..., 9 and, for i =j, let ai; be the number of times (mod 2)
 that we traverse crossing i when we trace along the knot from overcrossing j to

 5 \7

 3

 9

 FIGURE 3

 The knot 916
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 undercrossing j. For example, to determine the first column of A, we start at the
 overcrossing labeled 1 and trace along the knot diagram (in either direction) until we
 reach the undercrossing labeled 1. During this trip, we traverse crossings 3, 5, 6, and 9
 once, and we traverse crossings 2, 4, 7, and 8 either twice or not at all. Thus

 a21 = a41 = a71 = a81 = 0 and a31 = a51 = a61 = a91 = 1. By following the same proce-
 dure for each of the remaining eight columns, we obtain the matrix

 O 0 1 0 1 1 0 0 1

 O 0 1 1 1 0 1 0 0

 1 1 0 1 1 1 1 1 1

 0 1 1 0 1 0 1 0 0

 A= I I I I 0 1 1 1 1.

 I 0 1 0 1 0 0 0 1

 0 1 1 1 1 0 0 0 0

 O 0 1 0 1 0 0 0 0

 I 0 1 0 1 1 0 0 0

 This matrix is called the tT^ip matT^ix of the knot diagram, and it contains much
 information about the knot that the diagram represents. In particular, we can obtain
 the Jones polynomial of the knot directly from the matrix. (The Jones polynomial is a
 knot invariant that often can distinguish one knot from another.) For more about trip
 matrices, see [5]. Notice our trip matrix is an alternating matrix-in particular, it is
 symmetric. However, as we shall see, not every alternating matirix is the tlip mati-ix of
 a positive knot diagram.

 In [6], it is proved that the rank over Z/2Z of the trip matrix of a positive knot
 diagram is an even number. Specifically, the rank is shown to be twice the genus of
 the simplest orientable surface that spans the knot. (See Section 4.3 of [1] for more
 about spanning surfaces of knots.) Thus, for the trip matrix of a positive knlot diagram
 with an odd number of crossings, the nullspace must be non-trivial. This is an
 immediate consequence of "rank plus nullity equals size of matrix." So, for patterns of
 coins that correspond to such knots, we knew a pT^ioT^i that solutions had to exist. The
 next question was natural: What about checkerboard matrices that don't correspond
 to knots-must they also have non-trivial nullspaces? With that question, this note
 was born.

 As we know now, the answer to that question is yes. In fact, the answer is also yes to
 another natural question: Does each alternating matrix have even rank over Z/2Z? As
 noted above, for trip matrices of positive knot diagrams this can be proved using
 knot-theoretic arguments. To prove the result in general, we can view our matrix as
 the matrix (with respect to the standard basis) of an alternating bilinear form on
 (Z/2Z) l, and invoke Theorem 8.1 on p. 586 of [3]. This theorem provides a canonical
 decomposition of each alternating bilinear form, and an examination of this decompo-
 sition immediately shows that the rank of each matrix that represents the form is even.
 Of course, the affirmative answer to the second natural question implies an affirmative
 answer to the first, giving another-albeit indirect-proof of our theorem.

 In retrospect, what is amazing about the birth of the checkerboard challenge is
 what we didn't see. Our result from knot theory told us that the trip matrix of a
 positive knot diagram with an odd number of crossings had a non-trivial nullspace, or
 equivalently, that the corresponding checkerboard puzzle had a solution. But it wasn't
 until much later that we noticed the obvious: Meeting the checkerboard challenge for
 a pattern of coins that corresponds to any positive knot diagram is easy. In fact, we
 don't have to cover columns at all, the pattern comes already solved! This is because,
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 if we trace along a knot diagram from an overcrossing to the corresponding under-

 crossing, we will traverse an even number of other crossings, counting multiplicities.
 This is true no matter the number of crossings in the diagram, so for patterns
 that correspond to positive knots, parity is not an issue at all. This also shows there
 are an infinite number of alternating matrices that do not correspond to positive
 knot diagrams.

 There is something else that is interesting about patterns that correspond to positive
 knot diagrams. Not only do such patterns come already solved, but we can use the
 knot diagram to find any additional solutions that might exist. We do this as follows:

 We begin by placing an orientation on the knot. Then we simply replace each crossing
 in the diagram with a pair of small, uncrossed arcs that preserve the orientation. See
 FIGURE 4, which shows the result of this process for the knot from FIGURE 3.

 2

 5 7

 3

 9

 FIGURE 4

 Seifeit circles.

 The topological circles that result are called the Seifert circles of the oriented knot
 diagram, and they encode a collection of solutions to our puzzle. Each Seifert circle
 approaches sites formerly occupied by crossings. Each of those sites retains a
 numerical label, which identified the now-departed crossing. Thus, from each Seifert
 circle, we can obtain a set of numbers. For example, from the Seifert circles shown in
 FIGURE 4, we obtain {1, 3, 5, 6, 9}, {2, 3, 4, 5, 7}, {2, 4, 7, 8} and {1, 6, 8, 9}. Each of these
 sets yields a solution to the puzzle for the pattern of coins that corresponds to the knot

 916 For example, {1, 3,5,6, 9} indicates that we can obtain a solution by leaving those
 five columns uncovered on the board. The other three sets yield additional solutions
 in the same way, so here the Seifert circles are directly providing four solutions. Since
 the sum of these solutions corresponds to the zero vector in (Z/2z)9, the solutions
 are not linearly independent ovxer Z/2Z. However, any three of them are indepen-
 dent and form a basis for the space of solutions. Thus, in total, there are seven
 solutions to the puzzle for this knot diagram. These seven solutions correspond to the
 non-trivial linear combinations over Z/2Z of any three basic solutions.

 In fact, what we have demonstrated for the knot 916 is true in general. To find a
 basis for the set of solutions to the puzzle that corresponds to a positive knot diagram,
 simply resolve the diagram into Seifert circles and discard any circle. The sets that
 correspond to the circles that remain provide a basis for the set of solutions to the
 puzzle. (This can be seen by examining the proof of Theorem 2 in [5].) So, at least for
 certain special patterns of coins, we don't even need linear algebra to meet the
 incredible checkerboard challenge. We simply must draw the right picture!
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Two Diophantine Equations 
Studied by Ramanujan 

MICHAEL D. HIRSCH HORN 
The University of New South Wales 

Sydney, NSW 2052 
Australia 

Introduction In his second notebook [3, p. 225], Ramanujan wrote 

(6n2 + (3n3-n) )3 + (6n2_(3n3-n) )3 = (6n2 (3n2 + 1) )2 (1) 

and 

(n77 - 4(1 + p) + rn(3 
+ 

p)2 _ i))3 + (2 6 - 3M3( + 2p) + (+ 3p + 2))3 

+ (iM6 - (1 + 3p + 3 p2))3 

= (in7 - 3m4p + m(3p2 - 1))3. (2) 

These represent solutions of the diophantine equations 

A3 + B 3 = C 2 (3) 

and 

A3 + B3 + C3 = D3. (4) 

It appears ([2, pp. 578-9]) that equation (3) was first studied by Euler, and the 
general solution found by R. Hoppe. According to ([2, pp. 550-554]), equation (4) 
was studied by Vieta and Fermat, and the general solution found by Euler. Both 
equations, especially (4), have aroused considerable interest over the centuries. But 
Ramanujan knew none of this when he composed his notebooks [3]. 

It is, of course, easy to verify Ramanujan's solutions. But the question arises: How 
did Ramanujan obtain them? My object is to give a plausible answer. 

The diophantine equation A3 + B 3 = C 2 Suppose that A3 + B 3 = C 2, and write 
A = x + y and B = x-y. Then 

A3 + B3 = ( x + y)3 + ( x- y)3 = 2x3 + 6xy2 = 2x(X2 + 3y2) 

Now write y = a - b and X2 = 12ab, for then X2 + 3y2 = 3(a + b)2 and A3 + B3 3 

6x(a + b)2. Now let x = 6n2. Then 

A3 + B3 = 36m2(a + b)2 = (6(a + b)m)2 = C2, 

with C = 6(a + b)m. Also, 12ab = X2= (6m2)2 = 36m4, so ab = 3m4. Thus we obtain 
the following result. 

THEOREM 1. If m is an integer and if ab = 3m4, then 

(6m2 + (a - b) )3 + (6m2 - (a - b) )3 = (6(a + b)m)2. 
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Indeed, a straightforward calculation yields the identity 

(6m2 + (a - b) )+(6m2 - (a - b) )=(6(a + b) m)2 + 144n 2(3m4- ab) 

of which Theorem 1 is an immediate corollary. 

If we set a = 3m2n, b = m2/n, multiply by n6 and delete the factor in6, we obtain 
Ramanujan's result (1). 

If, instead, we set a = 3m4/n2 and b = n2, and multiply by n6, we obtain Euler's 
solution of (3): 

(3M4 + 6m2rn 2- n4)3 + (-3m 4 + 6m2n2 + n4) = (18m5n + 6mnn5)2. 

Yet again, if we set a = 3n and b = m4/n, and multiply by n6, we obtain 

(3n3 + 6m2nA n) + (-3n3 + 6mn2n + mnn) - (18mnn + 6n5)n 

If we now set n = m2 _ c, we obtain 

(8m6 - 20cm4 + 15c2m2 -3c3)3 + (4m6 - 4cm4 - 3C2M2 + 3c3)3 

= (24m9 - 84cm7 + 114cm5 -72c3m3 + 18c4m)2. 

Now put c = 2 p and divide throughout by 43 = 82, to find 

(m - 2 pm4 - 3p2n2 + 6p3)34 + (2m6 - 10pM4 + 15p2m2 -6 p3) 

- (3m9 - 21 pmn7 + 57p2m5 - 72p3m3 + 36 p4m)2. 

The diophantine equation A3 + B3 + C3 = D3 Suppose that A3 + B3 + C3 = D3, 
and write A=y-x, B=u+v, C=u-v, and D=y+x. Then u(n2+3V2)= 
X(X2 + 3y2), or, equivalently, 

ii x2 + 3 y2 
x i2 + 3V2 

If we set both sides equal to M, we find u = Mx and X2 + 3y2 = M(u2 + 3v2) = 
M(Mx)2 + 3Mu2 = M3x2 + 3MV2, or, equivalently, 

3(y2_MV2) = (M3- 1)X2. 

Now we let M = M2, to obtain 3(y + mv)(y - mw) = (in6 - i)x2. 

Up to this point I have been heavily indebted to Bruce Berndt [1, p. 198], but now 
our paths diverge. We set x = 3m, to get (y + mv)(y - mv) = 3M2(M6 - 1). Now we 
write y + mv = am and y - mv = bm, where ab = 3(m6 - 1). Then 

1 1 
y=-(amn+bmi) and v (a-b), 

with x = 3m and u = 3M3. Thus we have 

A =2(a + b-6) m, B = 2 (6m3 +(a-b)) 

C= j(6in3-(a-b)), D= I(a+b+6)m, 

and we obtain the following result: 
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THEOREM 2. If m is an integer and if ab = 3(m6 - 1), then 

((a +b-6)m)3+ (6rm3 +(a - b))3 +(6m3 _-(a - b))3 =((a+b+6)rn)3. 

Again, a straightforward calculation yields 

((a + b - 6)m)3 + (6rn3 + (a - b))3 + (6m3- (a - b))3 

= ((a+b+6)rn)3+144rn3(3(n6- 1) -ab), 

of which Theorem 2 is an immediate corollary. 

If we write a = 3n and b = (6 - )/n, and multiply through by n3 we obtain 

-7 M)3 +(3n + 6m3n -n6 + 1)3+ (-3n2 + 6rn3n + Tn6 -1) 

= (3mn2 + 6mn + n7-n)3. 

Next, we set n = m3 - c and obtain 

(4m7 - (6c + 6)rm4 + (3C2 + 6c - )Tn)3 

+ (8Tn6 -12cm3 + (3C2 + 1))3 + (4n6 - (3C2 + 1))3 

(4m7 -(6c - 6)m4 + (3C2 - 6c- 1)m)3. 

Finally, we put c = 2p + 1 and divide throughout by 43, to find 

(m7 -(3p + 3)rm4 + (3p2 + 6p + 2)mt) 

+ (2rn6- (6p + 3)n3 + (3p2 + 3p +1))3 

+ (in6 - (3p2 +3p + 1))3 

= (m7 - 3pmn4 + (3p2 _ l)M)3, 

which is Ramanujan's result (2). 

REFERENCES 

1. Bruce C. Berndt, Ramanujan's Notebooks, Part III, Springer-Verlag, New York, NY, 1991. 
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3. S. Ramanujan, Notebooks, Vol. 2, Tata Institute of Fundamental Research, Bombay, India, 1957. 
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PROBeL EMS 

GEORGE T. GILBERT, Editor 
Texas Christian University 

ZE-LI DOU, KEN RICHARDSON, and SUSAN G. STAPLES, Assistant Editors 
Texas Christian University 

Proposals 
To be considered for publication, solutions 
should be received by May 1, 1999. 

1559. Proposed by Joaqui'n Godnez Rey, I. B. "Luis Buinuel," Alcorcon, Madrid, 
Spain. 

For what complex numbers z is the sequence (an(z))n ? 0 defined by 

a,(z)= kE (n2k)z 

periodic? 

1560. Proposed by Wu Wei Chao, Guang Zhou Normal University, Guang Zhou 
City, Guang Dong Province, China. 

Points A, B, C, P, Q, and T lie on a circle and satisf AB > AC, T is on the same 
side of BC as A with TB = TC, and AP = AQ = V/AB AC. Let [ ABC] denote the 
area of A ABC, and so forth. 

(a) If / BAC ? 90?, prove that [ ABC] > [ APQ]. 
(b) If FAB AC < BC, prove that [TBC] > [APQ]. 

1561. Proposed by Emre Alkan, student, University of Wisconsin, Madison, Wiscon- 
sin. 

Let a,, . . ., ak be pairwise relatively prime, positive integers. Determine the largest 
integer not expressible in the form 

xla2a3 * ak + X2ala3 * *ak + Xkala2 * *ak-1, 

for some nonnegative integers xI,..., Xk. 

We invite readers to submit problems believed to be new and appealing to students and teachers of 
advanced undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any 
bibliographical information that will assist the editors and referees. A problem submitted as a Quickie 
should have an unexpected, succinct solution. 

Solutions should be written in a style appropriate for this MAGAZINE. Each solution should begin on a 
separate sheet containing the solver's name and full address. 

Solutions and new proposals should be mailed to George T. Gilbert, Problems Editor; Department of 
Mathematics, Box 298900, Texas Christian University, Fort Worth, TX 76129, or mailed electronically 
(ideally as a LATEX file) to g.gilbert@tcu. edu. Readers who use e-mail should also provide an 
e-mail address. 

389 

This content downloaded from 131.170.6.51 on Mon, 11 Jan 2016 07:39:18 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


390 MATHEMATICS MAGAZINE 

1562. Proposed by John Wickner, student, St. Thomas College, St. Paul, Minnesota, 
and Scott Beslin and Valerio De Angelis, Nicholls State University, Thibodaux, 
Louisiana. 

Prove that 

tan( tan14)22cos 
6 

+ cos 17 ) 

1563. Proposed by Wu Wei Chao, Guang Zhou Nornal University, Guang Zhou 
City, Guang Dong Province, China. 

For a given field F, classify all possible partitions of F into finitely many 
equivalence classes such that each class is closed under addition and multiplication by 
distinct elements in the class. 

Qu ickies 
Answers to the Quickies are on pages 396. 

Q885. Proposed by Keivan Mallahi, student, Sharif University of Technology, 
Tehran, Iran. 

Let S be a finite set of n X n matrices over a field. If S is closed under 
multiplication, prove that there exists M E S such that Trace (M) E {O, 1,2,. n}. 

Q886. Proposed by Zheng-Ping Tian, Hangzhou Teacher's College, Hangzhou, 
Zhejiang, China. 

If a, b, and c are real numbers that satisfy a ? b ? c ? 0 and a + b + c = 3, show 
that ab2 + bc2 + ca2 < 27/8. 

Solutions 

Sum of a Sequence of Floors and Ceilings December 1997 

1534. Proposed by Donald Knuth, Stanford University, Stanford, California. 

Let m, n, and p be positive integers, and set 

tm,l P(n) = 
nm 
2 l SIn, p(n) = t,,p(0) + t,n,p(1) + . 

+t1n,p(n -1). 

Prove that s-,n, p(n) is a multiple of tm, p(n). 
Solution by Matthias Beck and Akalu Tefera, Tenmple University, Philadelphia, Penn- 
sylvania, and Melkamu Zeleke, The William Paterson University of New Jersey, 
Wayne, New Jersey. 

We prove a slightly more general result: Let m, n, p E FM and define TI (n):= 
Rn/mn]/pl and Sm, p(n) := E'j T (j) Then S p(n) is a multiple of T (n) if 
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and only if n < m or at least one of the integers m, p, q is even, where q 
L(n - m)/( pm)]. 

To begin the proof, observe that if n < m, then Sin, ,(n) = 0, which is clearly a 
multiple of Tn,' p(n). Therefore, assume n > m. Then 

Tm,p(h) =4 LI/1] = i/rn ]+pP -l] [[npLt/rn)1] ] + 1 

_[nm] + n=q+ p>n, pmp 

where we used the fact that, for b E FN, LIa]/b] = [a/b]. Furthermore, 

Sin, p = ( En T,,,, ,(j) = E([JI +]1)I 
j=O j=-O 

M 

Now divide [m, n - 1] into subintervals of pm integers (plus the remaining final 
subinterval, which could be empty), each representing a constant contribution to 
Sin p (n). Thus, we have 

rn-I q-i pmn(k+?)?+-i n-I 

SMIlP(n)= E0+ E , (k +1) + E (q +l 
j=O k=O j =pmnk?+n j=pnq?+n 

q-i 

- Epmn(k + 1) + (n - pnq -mn)(q +1) 
k=O 

-p,mq(q +) + - '+- --pmnq~ 
2 pmq(q +l) (n-pmq-m)(q+l)= n-m 2 Tn, p(n) 

It follows that Tf (n) divides S ,(n) if and only if n - n- - pmq/2 is an integer, 
which in turn holds if and only if pmq is even. 

Also solved by J. C. Binz (Switzerland), Mark Bowron, David Callan, John Christopher, Con Amore 
Problemn Group (Denmark), Daniele Donini (Italy), Marty Getz and Dixon Jones, Thomas Jager, Sean 
Mcllroy (Canada), loana Mihaila, Kenneth Rogers, Heinz-jUirgen Seiffert (Germany), Nicholas C. Singer, 
The TAMUK Problem Solvers, Western Maryland College Problems Group, and the proposer. There wvere 
three incorrect solutions. 

A Class of Real-Valued Functions on Groups December 1997 

1535. Proposed by Sergei Ovchinnikov, San Francisco State University, San Fran- 
cisco, California. 

Let S be a nonempty set of real numbers. Prove that there exists a group G and a 
surjective function f: G > S satisfying 

f( xy 1) min {f( x), f( y) } for all x, y E G 

if and only if supS E S. 

Solution by Yan-loi Wong, The National University of Singapore, Singapore, Republic 
of Singapore. 

Suppose that such a group G and a surjection f: G -> S exist. Let s E S. As f is 
surjective, there exists x E G such that f(x) = s. Denote the identity element of G 
by e. Then, f(e) = f(xx -1) ? min{tf(x), f(x)} =f(x) = s. Hence, sup S =f(e) E S. 
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Conversely, suppose sup S E S. Let G be the free abelian group generated by S. 
Then x - G can be represented as Es es nss, where only finitely many of the 
integers ns are nonzero. Define a function f: G ->S as follows. For the identity 
element 0 of G, define f(O):= sup S. For x 0 0, define f(x):= min{s I ns 0 0}. 
Clearly, f is surjective. It is straightforward to check that f(x - y) ? min{f(x), f( y)} 
for all x,y EG. 

Also solved by Matt Baker (graduate student), Daniele Donini (Italy), Marty Getz and Dixon Jones, 
Thomas Jager, Michael Josephy (Costa Rica), John Koker, J. H. Pathak, W. R. Smythe, and the proposer. 

Determinants of Catalan Numbers December 1997 

1536. Proposed by Emeric Deutsch, Polytechnic University, Brooklyn, New York. 

Let c, = (2n )/(n + 1) be the Catalan numbers. Evaluate the determinants 

1 C1 C2 ... Cn - 2 C1 -1 

-1 1 C1 ... * t-3 C1-2 

O -1 1 ... cn -4 cn -3 
A 

= 
and 

O O 0 ... 1 c1 
O O 0 ... -1 1 

2 c1 c2 ... Cn-2 Cn-1 

-1 2 cl ... ci- 3 Cn-2 

O -1 2 ... cZl-4 Ci1_3 

O O 0 ... 2 cl 

O 0 0 -1 2 

I. Solution by Frank A. Horrigan, Raytheon Systems Company, Tewksbury, Mas- 
sachusetts. 

We show that An = cn and B1 = Cn +1' 
Define Ao:= 1, Bo: = 1, and the generating functions A(x): = E:=O AnX", 

B(x):= El,o B, xn, and C(x) :=E , c xn First let us evaluate the generating 
function C(x). A recursive relationship can be written from the definition of Cn, 
namely (n + 2)c,,+1 = (4n + 2)c,,. Multiplying both sides of this recursion by xl] and 
summing from 0 to oo, we find 

00 00 00 00 

E (n + 1)Cn+l x" + E cn +,1 x = 4 , ncn X + 2 E Cn X , 
n=O n=0 n=O n=O 

or 

d C(x) - I d 
d-C x) + -= 4x d-C( x) + 2C( x). 

With initial condition C(O) = co = 1, this differential equation has solution 

1x - 1v/ - C4Ox= 
C( X) 9" C (0)=1, 
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which satisfies 

x[C(X)]2 _ C(X) + 1 =0. (1) 

We now evaluate the determinants An+I and Bn+I through repeated expansion by 
minors using the left-most column at each stage, obtaining 

C1 C2 ... C,l-1 Cn 

- I I ..'. cn-3 cn-2 

A1+1-A +. 

O O ... 1 C1 

O O ... -1 1 

- *t =c0 An +c1An-I + +cn11A1 +cnA0 

and 

c1 C2 .. cn-1 Cn 

-1 2 ... cn-3 cii-2 

B4=2B71 Bn+I = Bit+. 

O O ... 2 c 
O O ... -1 2 

= .. =B +coBn +c,Bn-I + ' +Cn-l B1 +CnB0. 

Multiplying both sides of each equation by xn+1 and summing from 0 to oo, we find 
that A(x) -1 =xA(x)C(x) and B(x) -1 =xB(x) +xB(x)C(x). Solving for A(x) 
and B(x) and using equation (1) yields 

1 1I C(x)-1I 
A( x) 1 =C(x) and B(x)= 1-x-xC(x) x 

Therefore, An = cn and Bn =Cn + 1 

II. Solution by Lou Shapiro, Howard University, Washington, D. C. 

Equation (1) of Solution I above implies the standard identity 

Cn COcn-1 + C1cn-2 + C2Cn-3 + 
.. 

+Cn- _Co. (2) 

We may rewrite this identity for n, n - 1,.. .,1, 0 in matrix form as 

1 c1 C2 ... cn-2 Cn1 c711 

-1 I C Cn-3 Cn-2 Cn-2 0 

O -1 1 ... Cn-4 C-t-3 - Cn3 0 

0 0 0 ... 1 c1 c1 0 
0 0 0 ... -1 co 0 
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Applying Cramer's rule to solve for the final variable yields 

1 C1 C2 ... Cn-2 Cn 

-1 1 C1 ... Ct-3 0 

O -I 1 ... Cn-4 0 

O 0 0 ... 1 0 
0 0 0 ... -1 0 Cn 

= = 1 C1 C2 . n-2 .-_ 

-1 1 c1 ... c - 3 Cn-2 

O -I 1 ... C,t - 4 Cn-3 

O O 0 ... 1 c 

O O 0 ... -1 1 

Because the determinant in the numerator, cn, is non-zero, An is non-zero as well. 
This justifies the use of Cramer's rule and allows us to conclude that A = cn. 

Similarly, a slight manipulation of the identity (2) yields 

2 cl c2 ... c, 2 c1 c c 
- 1 2 c1 .. cn-3 c,t-2 cn-I 0 

O -1 2 ... Cn-4 Cn-3 Cn-2 0 

O O 0 ... 2 cl c2 0 

O 0 0 ... -1 2 cl 0 

Cramer's rule now implies 1 = cl = cn+l/Bn, or Bn= cn+l. 

Also solved by Anchorage Math Solutions Group, J. C. Binz (Switzerland), Stan Byrd and Ronald L. 
Smith, David Callan, C. Coker, Con Amore Problem Group (Denmark), Daniele Donini (Italy), Seyoum 
Getu, Marty Getz and Dixon Jones, Thomas Jager, Harris Kwong, Carl Libis, Allan Pedersen (Denmark), 
Heinz-Jiirgen Seiffert (Germany), William F. Trench, Western Maryland College Problems Group, Michael 
Woltermann, and the proposer. There was one incomplete solution. 

A Nim-Type Game December 1997 

1537. Proposed by Jerrold W. Grossman, Oakland University, Rochester, Michigan. 

A two-person game is played as follows. A position consists of a pair (a, b) of 
positive integers. Players alternate moves, a move consisting of decreasing the larger 
number in the current position by any positive multiple of the smaller number, as long 
as the result remains positive. The first player unable to make a move loses. (This 
happens when a = b.) Determine those a and b such that the player who goes first 
from position (a, b) can guarantee a win with optimal play. 

Solution by Philip D. Straffin, Beloit College, Beloit, Wisconsin. 

The player who goes first can guarantee a win if and only if the ratio of the larger 
number to the smaller is greater than the "golden ratio" 4 = (1 + 45_)/2. To show 
this, we partition the set of unordered pairs of (not necessarily distinct) positive 
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integers into the set 2 of pairs for which this condition is true, and the set Y of pairs 
for which it is false. We must show that 

(i) for any pair in X, there is at least one move which leaves a pair in 2, and 
(ii) for any pair in 2, all legal moves leave a pair in 7. 

To prove (i), consider {a, b} with a/b > (P. It suffices to show that there is a 
positive integer k such that 

1 a-bk 
4) < b < 

Since (P satisfies the identity 1/4 = 4 - 1, this is equivalent to 
a 

0- I < -b--_k < + 

Because (P is irrational, there is exactly one such integer k, which is positive since 
a/b > (P. We have shown that for any position in X, there is exactly one move leaving 
a pair in Y. 

To prove (ii), consider {a, b} with 1 < a/b < (P. If a = b, there is no legal move and 
the player to move has lost. If a > b, the only legal move is to {a - b, b}, and then 

b 1 1 
bb a -b a _ 0 -1 I 

Also solved by Christian Blatter (Switzerland), David M. Bloom, Jean Bogaert (Belgium), David 
Callan, John Christopher, Con Amore Problem Group (Denmark), Daniele Donini (Italy), William 
Gasarch, Marty Getz and Dixon Jones, Robert Gibson, Peter Griffin, Thomas Jager, Kevin McDougal, 
Sean McIlroy (Canada), William A. Newcomb, Oklahoma State University Problem Solving Group, Allen J. 
Schwenk, Jorge-Nuno Silva (Portugal), W. R. Smythe, James A. Swenson (student), Michael Woltermann, 
and the proposer. There was one incorrect solution. 

A 5th Degree, Symmetric Diophantine Equation December 1997 

1538. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, 
Canada, and George T. Gilbert, Texas Christian University, Fort Worth, Texas. 

Find all integer solutions to 2(x5 + y5 + 1) = 5xy(x2 + y2 + 1). 

I. Solution by Brian D. Beasley, Presbyterian College, Clinton, South Carolina. 

We show that the given equation holds for integers x and y if and only if 
x +Y+ 1 = 0. 

The given equation is true if and only if 

2(x5+y5+1)-5xy(x2+y2+1)=(x+y+1)f(x,y))=0, 

where 

f(x, y) = 2x4 - 2x3y + 2x2y2 - 2xy3 + 2y4 - 2x3 -x2y -xy2 
- 2y3 + 2x2 -xy + 2y2 - 2x - 2y + 2. 

Thus we need only show that f(x, y) A 0 for all integers x and y. Observe that in any 
solution of the original equation, x and y must have opposite parity. By symmetry, we 
may assume without loss of generality that x is even and y is odd. Then 

f(x, y)=2y4-xy2-2y3-xy+2y2-2y+2(mod4). 

However, each of the expressions 2 y4 -2 y3 = 2 y3(y -1), -xy2 _ xy = -xy(y + 1), 
and 2y2 -2y = 2y(y - 1) is divisible by 4 for x even, leaving f(x, y)=- 
2 (mod 4). 
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II. Solution by Lenny Jones and students Karen Blount, Dennis Reigle, and Beth 
Stockslager, Shippensburg University, Shippensburg, Pennsylvania. 

The only solutions are ordered pairs of integers (x, y) with x + y + 1 = 0. 
To see this, factor 2(x5 + y5 + 1) - 5xy(x2 + y2 + 1) as (x + y + l)f(x, y), where 

f(x, y) = [2x3(x - y - 1)] + [ x(2y2 -y + 2)(x - y -)] 

+[2y4-2y3] + [2y2-2y] +2. 

If y = x, then f(x, y) = 2x4 - 6x3 + 3X2 - 4x + 2, which has no integer roots by the 
rational root theorem. Note that x and y cannot both be negative. By symmetry, it 
suffices to show that f(x, y) = 0 for x ? y + 1 with x 2 0. In this case, observe that 
each of the bracketed terms in f(x, y) is nonnegative, so that f(x, y) > 0. 

Also solved by Reza Akhlaghi, Roy Barbara (Lebanon), Matt Baker (graduate student), J. C. Binz 
(Switzerland), Stan Byrd and Terry J. Walters, John Christopher, Con Amore Problem Group (Denmark), 
Daniele Donini (Italy), David Doster, Arthur H. Foss, Jiro Fukuta (Japan), Marty Getz and Dixon Jones, 
Thomas Jager, Kee-Wai Lau (China), Atar Sen Mittal, Kandasamy Mutthtuvel, Oklahoma State University 
Problem Solving Group, Allan Pedersen (Denmark), Gao Peng (graduate student), John P. Robertson and 
James S. Robertson, Kenneth Rogers, Nicholas C. Singer, The TAMUK Problem Solvers, Charles H. 
Webster, Western Maryland College Problems Group, Michael Woltermann, and the proposers. There were 
eight incorrect solutions and three incomplete solutions. 

Answers 
Solutions to the Quickies on page 390. 

A885. Given A E S, there exist positive integers j and k, with 2j < k such that 
Ai = Ak. Let M=Ak-i. Then 

M2 = A2(k-i) = Ak-2 JAk = Ak-2 Ai = Ak-i = M. 

The eigenvalues of M are thus 0 and 1, and Trace (M) is the multiplicity of 1 in the 
characteristic polynomial of M. 

A886. Let f(a, b, c)= ab2 + bC2 + ca2. Then 
f(a,b,c) +f(a,c,b) =(a+b+c)(ab+bc+ca) -3abc=3(ab+bc+ca-abc) 

=3[(1 - a)(l - b)(l - c) + (a + b + c) - 1] = 3[(1 - a)(l - b)(l - c) + 2]. 

Because c < I a, we have (l-a)(l-b)(l-c) < 0 if b < 1. If l < b, then 

(I1-a)(l -b)(l -c) < ( I -1 ( - c) < ( 2-1) (1-0)=4 

Therefore, f(a, b, c) +f(a, c, b) < 27/4. Noting that 

f(a,c,b) -f(a,b,c) = (a-b)(b -c)(a -c) ?0, 
we have f(a, b, c) < 27/8. 

Correction 
Q880, June 1998. The first exponent in the sum was incorrect. The problem should 

have read: Show that ()k = n!. 
k~~~~ 

Acknowledgments. The editors would like to thank Murray S. Klamkin, Loren C. 
Larson, Harvey Schmidt, and Daniel H. Ullman for their help in reviewing problem 
proposals over the last year. 
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 R EV IEWS

 PAUL J. CAMPBELL, Editor

 Beloit College

 Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles and books are selected for

 this section to call attention to interesting mathematical exposition that occurs outside the

 mainstream of mathematics literature. Readers are invited to suggest items for review to

 the editors.

 Singh, Simon, Mathematics "proves" what the grocer always knew oranges [sic], New York

 Times (25 August 1998) F3. Devlin, Keith, Kepler's sphere packing problem solved,

 http: //www. maa. org/devlin/devlin_9_98. html. Peterson, I., Cracking Kepler's sphere-

 packing problem, Science News 154 (15 August 1998) 103. Mackenzie, Dana, The proof is

 in the packing, American Scientist (November-December 1998) http: //www. amsci. org/

 amsci/issues/Sciobs98/sciobs98-llpacking.html. Hales, Thomas, The Kepler Conjec-

 ture, http:/www.math.lsa.umich.edu/-hales/countdown/.

 Kepler conjectured in 1611 that the densest way to pack spheres in infinite space is the

 face-centered cubic packing, used by grocers to stack oranges. Thomas Hales (University

 of Michigan) has announced a proof of the conjecture, which involves substantial computer

 support and verification. The method involves classifying the possible kinds of star-shaped

 gaps between spheres, decomposing them into a hybrid of Voronoi cells and Delaunay

 triangulations, and solving an enormous optimization problem for each kind. The prose

 part of the proof (250 pp) is at Hales's Web site, as is the 3 GB of programs and data. It

 will take some time before experts pronounce an opinion on the correctness of the proof!

 Morris, S. Brent, Magic Tricks, Card Shuffling and Dynamic Computer Memories, MAA,

 1998; xv + 148 pp,$28.95 (P). ISBN 0-88385-527-3.

 This is a fun book that neatly encapsulates the mathematics behind card shuffling and

 wraps it beautifully in the milieu of magic. Each chapter begins with the description of

 a card trick, followed by the development of the mathematics involved, and ends with

 explaining in terms of the mathematics how the trick works. One chapter shows how card

 shuffling can be applied to data retrieval and to data interchange in a parallel computer.

 The level of mathematics involved climbs in the course of the book, from modular arithmetic

 to permutation groups; but the book can be enjoyed by anyone.

 Maor, Eli, Trigonometric Delights, Princeton University Press, 1998; xiv + 236 pp, $24.95.

 ISBN 0-691-05754-0.

 Can your students explain why it is advantageous to measure angles in radians? And do

 you know how recently the term was coined? (1871). True to its title, this book presents

 delights, both practical and esthetic, that would liven up any student's experience of study-

 ing trigonometry. Although the book is not a comprehensive history of trigonometry, it

 presents numerous topics in trigonometry from a historical perspective, from the Babylo-

 nian tablet Plimpton 322 through measuring the earth to Fourier series. Calculus occurs in

 just a few places (e.g., in considering (sin 0)/0, which arises in calculating the circumference

 of a circle at latitude ir/2 -0). [One error marred my enjoyment: The name of A.B. Chace,

 who investigated the Rhind Papyrus, appears consistently as "Chase."]

 397
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 Henze, Norbert, and Hans Riedwyl, How to Win More: Strategies for Increasing a Lottery

 Win, A K Peters, 1998; x + 149 pp, $15.95 (P). ISBN 0-56881-078-4.

 "The main purpose of How to Win More is to give you valuable insights into how to improve

 your long-term return on investment when playing lotto ... [F]ormulae for computing odds

 or expectations have been 'banned' into a separate unit (Chapter 8)." The insights boil down

 to the advice to avoid popular combinations so that you won't be as likely to have to share

 the prize if you win. The authors define the arithmetic complexity of a combination for an

 r/s lottery as the number of positive differences between the numbers, minus (r - 1) (e.g.,

 the arithmetic complexity of an arithmetic progression is 0). Simple rules for generating

 combinations, which are likely to be used by many people, generally produce combinations

 of low arithmetic complexity. The Mathematical Appendix is valuable in collecting together

 in one place a number of formulas (on waiting times, sums of numbers, etc.). The topic of

 "intelligent play" is treated also in "Lotto play: The good, the fair, and the truly awful,"

 by Dan Kadell and Donald Ylvisaker, Chance 4 (1991) (3) 22-25, 57. The book, however,

 avoids giving advice on when to buy a lottery ticket; for that, see "When to buy a lottery

 ticket," by Sam C. Saunders, Mathematics Notes from Washington State University 30

 (May 1987) (1-2) (Whole Numbers 117, 118) (but beware inverted exponent in equation

 (13)).

 Dudley, Underwood, Numerology, or, What Pythagoras Wrought, MAA, 1997; viii + 316

 pp, $29.95. ISBN 0-88385-524-0.

 This is a highly entertaining book by a former Associate Editor of this MAGAZINE, whose

 writing pulls no punches. "Mysticism is a nonrational method of getting at truth ... There

 is nothing wrong with mysticism. On the other hand, everything is wrong with numerology.

 Numerologists purport to apply number mysticism ... Numerologists assert that numbers

 tell you where it would be best to live, who you should marry, even at what time you should

 arrive for an appointment. Numbers do not do this. It is not their job. Numbers have

 power, but not that kind of power." The chapters of the book tour through the history

 and current practice of numerology, from Pythagoras ("shame on him"), biblical sevens,

 rithmomachy (a game), and pyramidology, to the Elliott Wave (explain the stock market

 with Fibonacci numbers) and biorhythms (good and bad days based on 23, 28, and 33).

 "[I]t is my hope that copies of [this book] will turn up on the New Age shelves of used book

 stores, where they may fall into the hands of those expecting something different. The

 shock may do them good."

 Dershowitz, Nachum and Edward M. Reingold, Calendrical Calculations, Cambridge Uni-

 versity Press, 1997; xxi + 307 pp, $64.95, $22.95 (P). ISBN 0-521-56413-1, 0-521-56474-3.

 This book gives precise descriptions of fourteen calendars of current and historical interest,

 together with accurate algorithms and Lisp computer code. Calendars included are Gre-

 gorian, ISO, Julian, Coptic, Ethiopic, Islamic, modern Persian, Baha'i, Hebrew, Mayan,

 French Revolutionary, Chinese, old Hindu, and modern Hindu.

 Connelly, Robert, and Allen Back, Mathematics and tensegrity, American Scientist (March-

 April 1998) 142-151.

 R. Buckminster Fuller popularized tensegrity structures, in which rigid struts are inter-

 connected with cables under tension. This paper describes how these structures can be

 modeled mathematically and investigates conditions for stability. Group representations

 come into play, but the authors deftly hold the technical details back in favor of insightful

 prose exposition.
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 Julia a life in mathematics

 V. - Constnce Reid
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 Non- Euclidean
 Geometry
 Sixth Edition

 H. S. M. COXETER

 Series: Spectrum

 H. S. M. Coxeter's classic book on non-Euclidean
 geometry was first published in 1942, and enjoyed
 eight reprintings before it went out of print in 1968.
 The MAA is delighted to be the publisher of the
 sixth edition of this wonderful book, updated with
 a new section 15.9 on the author's useful concept of
 inversive distance.

 Throughout most of this book, non-Euclidean
 geometries in spaces of two or three dimensions are
 treated as specializations of real projective geometry
 in terms of a simple set of axioms concerning points,
 lines, planes, incidence, order and continuity, with
 no mention of the measurement of distances or angles.
 This synthetic development is followed by the intro-
 duction of homogeneous coordinates, beginning
 with Von Staudt's idea of regarding points as entities
 that can be added or multiplied. Transformations
 that preserve incidence are called collineations.
 They lead in a natural way to elliptic isometries or

 "congruent transformations". Following a recom-
 mendation by Bertrand Russell, continuity is
 described in terms of order. Elliptic and hyperbolic
 geometries are derived from real projective geome-
 try by specializing an elliptic or hyperbolic polarity
 which transforms points into lines (in two dimen-
 sions) or planes (in three dimensions) and vice versa.

 An unusual feature of the book is its use of the
 general linear transformation of coordinates to derive
 the formulas of elliptic and hyperbolic trigonometry.
 The area of a triangle is related to the sum of its
 angles by means of an ingenious idea of Gauss. This
 treatment can be enjoyed by anyone who is familiar
 with algebra up to the elements of group theory.

 Catalog Code: NEC/JR
 320 pp., Paperbound, 1988
 ISBN 0-88385- 522-4
 List: $30.95 MAA Member: $24.50

 Monday - Friday 8:30 am - 5:00 pm FAX (301) 206-9789

 or mail to: The Mathematical Association of America, PO Box 91112, Washington, DC 20090-1112

 Shipping and Handling: Postage and handling are charged as follows: USA orders (shipped via UPS): $2.95 for the first book, and $1.00 for each additional book. Canadian
 orders: $4.50 for the first book and $1.50 for each additiQnal book. Canadian orders wilibe shipped within 10 days of receipt of order via the fastest available route. We do not
 ship via UPS into Canada unless the customer specially requests this service. Canadian customers who request UPS shipment will be billed an additional 7% of their total order.
 Overseas orders: $3.50 per item ordered for books sent surface mail. Airmail service is available at a rate of $7.00 per book. Foreign orders must be paid in US dollars through a
 US bank or through a New York clearinghouse. Credit Card orders are accepted for all customers.
 ---------------------------------------------------------------__------------__--------

 QTY. CATALOG CODE PRICE AMOUNT

 Name NECJR

 All orders must beprepid with the excep- Shippmng&handUing
 Address tion of books purciased for resale by book-

 stores and wolesalrs. TOTAL

 City State Zip Payment 0 Check O VISA O MasterCard
 Credit Card No. __Expires J

 Phone Signature
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 This book is based on the notes of a course in logic given by
 Paul Halmos. This book retains the spirit and purpose of
 those notes, which was to show that logic can (and perhaps
 should) be viewed from an algebraic perspective. When so
 viewed, many of its principal notions are seen to be old
 friends, familiar algebraic notions that were "disguised" in logi-
 cal clothing. Moreover, the connection between the principal
 theorems of the subject and well-known theorems in algebra
 becomes clearer. Even the proofs often gain in simplicity

 Propositional logic and monadic predicate calculus-predicate
 logic with a single quantifier- are the principal topics treated.
 The connections between logic and algebra are carefully
 explained. The key notions and the fundamental theorems are
 elucidated from both a logical and algebraic perspective. The
 final section gives a unique and illuminating algebraic treatment
 of the theory of syllogisms-perhaps the oldest branch of logic,
 and a subject that is neglected in most modern logic texts.

 The presentation is aimed at a broad audience-mathematics
 amateurs, students, teachers, philosophers, linguists, computer
 scientists, engineers, and professional mathematicians.
 Whether the reader's goal is a quick glimpse of modem logic or
 a more serious study of the subject, the book's fresh approach
 will bring novel and illuminating insights to beginners and pro-
 fessionals alike. All that is required of the reader is an acquain-
 tance with some of the basic notions encountered in a first
 course in modem algebra. In particular, no prior knowledge of
 logic is assumed. The book could serve equally well as a fire-
 side companion and as a course text.

 Contents: What is Logic?: To count or to think; A small
 alphabet; A small grammar; A small logic; What is truth?;
 Motivation of the small language; All mathematics.
 Propositional Calculus: Propositional symbols;
 Propositional abbreviations; Polish notation; Language as
 an algebra; Concatenation; Theorem schemata; Formal
 proofs; Entailment; Logical equivalence; Conjunction;
 Algebraic identities. Boolean Algebra: Equivalence class-
 es; Interpretations; Consistency and Boolean algebra;
 Duality and commutativity; Properties of Boolean alge-
 bras; Subtraction; Examples of Boolean algebras.
 Boolean Universal Algebra: Subalgebras;
 Homomorphisms; Examples of homomorphisms; Free
 algebras; Kernels and ideals; Maximal ideals;
 Homomorphism theorem; Consequences; The represen-
 tation theorem. Logic via Algebra: Pre-Boolean algebras;
 Substitution rule; Boolean logics; Algebra of the proposi-
 tional calculus; Algebra of proof and consequence.
 Lattices and Infinite Operations: Lattices; Non-distribu-
 tive lattices; Infinite operations. Monadic Predicate
 Calculus: Propositional functions; Finite functions;
 Functional monadic algebras; Functional quantifiers;
 Properties of quantifiers; Monadic algebras; Free monadic
 algebras; Modal logics; Monadic logics; Syllogisms.

 Catalog Code: DOL-21/JR98
 152 pp., Paperbound, 1998, ISBN 0-88385-327-2
 List: $27.00 MAA Member: $21.95

 I ~~~ ~ I Iee 111 ' |*'F ' - 1 ** wq 1 1tzF

 Monday - Friday 8:30 am - 5:00 pm FAX (301) 206-9789

 or mail to: The Mathematical Association of America, PO Box 91112, Washington, DC 20090-1112

 Shipping and Handling: Postage and handling are charged as follows: USA orders (shipped via UPS): $2.95 for the first book, and $1.00 for each additional book. Canadian
 orders: $4.50 for the first hook and $1.50 for each additional book. Canadian orders will he shipped within 10 days of receipt of order cia the fastest available route. We do not
 ship X ia LUPS into Canada unless the customer specially requests this sercice. Canadian customers who request LPS shipment will be billed an additional 7%h of their total order.
 Overseas orders: $3.50 per item ordered for books sent surf-ace mail. Airmail service is acailable at a rate of $7.00 per hook. Foreign orders must he paid in US dollars through a
 LUS hank or through a New York clearinghouse. Credit Card orders are accepted for all customers.
 --------------------------------------------------------------__-------------__--------
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